from __future__ import annotations
from typing import (overload, Any, SupportsFloat, Literal, Protocol, SupportsIndex)

import numpy as np
from numpy.typing import ArrayLike, NDArray

# Anything that can be parsed by `np.float64.__init__` and is thus
# compatible with `ndarray.__setitem__` (for a float64 array)
_FloatValue = None | str | bytes | SupportsFloat | SupportsIndex

class _MetricCallback1(Protocol):
    def __call__(
        self, __XA: NDArray[Any], __XB: NDArray[Any]
    ) -> _FloatValue: ...

class _MetricCallback2(Protocol):
    def __call__(
        self, __XA: NDArray[Any], __XB: NDArray[Any], **kwargs: Any
    ) -> _FloatValue: ...

# TODO: Use a single protocol with a parameter specification variable
# once available (PEP 612)
_MetricCallback = _MetricCallback1 | _MetricCallback2

_MetricKind = Literal[
    'braycurtis',
    'canberra',
    'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch',
    'cityblock', 'cblock', 'cb', 'c',
    'correlation', 'co',
    'cosine', 'cos',
    'dice',
    'euclidean', 'euclid', 'eu', 'e',
    'hamming', 'hamm', 'ha', 'h',
    'minkowski', 'mi', 'm', 'pnorm',
    'jaccard', 'jacc', 'ja', 'j',
    'jensenshannon', 'js',
    'kulczynski1',
    'mahalanobis', 'mahal', 'mah',
    'rogerstanimoto',
    'russellrao',
    'seuclidean', 'se', 's',
    'sokalmichener',
    'sokalsneath',
    'sqeuclidean', 'sqe', 'sqeuclid',
    'yule',
]

# Function annotations

def braycurtis(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def canberra(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

# TODO: Add `metric`-specific overloads
# Returns a float64 or float128 array, depending on the input dtype
@overload
def cdist(
    XA: ArrayLike,
    XB: ArrayLike,
    metric: _MetricKind = ...,
    *,
    out: None | NDArray[np.floating[Any]] = ...,
    p: float = ...,
    w: ArrayLike | None = ...,
    V: ArrayLike | None = ...,
    VI: ArrayLike | None = ...,
) -> NDArray[np.floating[Any]]: ...
@overload
def cdist(
    XA: ArrayLike,
    XB: ArrayLike,
    metric: _MetricCallback,
    *,
    out: None | NDArray[np.floating[Any]] = ...,
    **kwargs: Any,
) -> NDArray[np.floating[Any]]: ...

# TODO: Wait for dtype support; the return type is
# dependent on the input arrays dtype
def chebyshev(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> Any: ...

# TODO: Wait for dtype support; the return type is
# dependent on the input arrays dtype
def cityblock(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> Any: ...

def correlation(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ..., centered: bool = ...
) -> np.float64: ...

def cosine(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def dice(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def directed_hausdorff(
    u: ArrayLike, v: ArrayLike, seed: int | None = ...
) -> tuple[float, int, int]: ...

def euclidean(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def hamming(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def is_valid_dm(
    D: ArrayLike,
    tol: float = ...,
    throw: bool = ...,
    name: str | None = ...,
    warning: bool = ...,
) -> bool: ...

def is_valid_y(
    y: ArrayLike,
    warning: bool = ...,
    throw: bool = ...,
    name: str | None = ...,
) -> bool: ...

def jaccard(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def jensenshannon(
    p: ArrayLike, q: ArrayLike, base: float | None = ...
) -> np.float64: ...

def kulczynski1(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def mahalanobis(
    u: ArrayLike, v: ArrayLike, VI: ArrayLike
) -> np.float64: ...

def minkowski(
    u: ArrayLike, v: ArrayLike, p: float = ..., w: ArrayLike | None = ...
) -> float: ...

def num_obs_dm(d: ArrayLike) -> int: ...

def num_obs_y(Y: ArrayLike) -> int: ...

# TODO: Add `metric`-specific overloads
@overload
def pdist(
    X: ArrayLike,
    metric: _MetricKind = ...,
    *,
    out: None | NDArray[np.floating[Any]] = ...,
    p: float = ...,
    w: ArrayLike | None = ...,
    V: ArrayLike | None = ...,
    VI: ArrayLike | None = ...,
) -> NDArray[np.floating[Any]]: ...
@overload
def pdist(
    X: ArrayLike,
    metric: _MetricCallback,
    *,
    out: None | NDArray[np.floating[Any]] = ...,
    **kwargs: Any,
) -> NDArray[np.floating[Any]]: ...

def seuclidean(
    u: ArrayLike, v: ArrayLike, V: ArrayLike
) -> float: ...

def sokalmichener(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def sokalsneath(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def sqeuclidean(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...

def squareform(
    X: ArrayLike,
    force: Literal["no", "tomatrix", "tovector"] = ...,
    checks: bool = ...,
) -> NDArray[Any]: ...

def rogerstanimoto(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def russellrao(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...

def yule(
    u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...