"""Test of min-max 1D features of sparse array classes""" import pytest import numpy as np from numpy.testing import assert_equal, assert_array_equal from scipy.sparse import coo_array, csr_array, csc_array, bsr_array from scipy.sparse import coo_matrix, csr_matrix, csc_matrix, bsr_matrix from scipy.sparse._sputils import isscalarlike def toarray(a): if isinstance(a, np.ndarray) or isscalarlike(a): return a return a.toarray() formats_for_minmax = [bsr_array, coo_array, csc_array, csr_array] formats_for_minmax_supporting_1d = [coo_array, csr_array] @pytest.mark.parametrize("spcreator", formats_for_minmax_supporting_1d) class Test_MinMaxMixin1D: def test_minmax(self, spcreator): D = np.arange(5) X = spcreator(D) assert_equal(X.min(), 0) assert_equal(X.max(), 4) assert_equal((-X).min(), -4) assert_equal((-X).max(), 0) def test_minmax_axis(self, spcreator): D = np.arange(50) X = spcreator(D) for axis in [0, -1]: assert_array_equal( toarray(X.max(axis=axis)), D.max(axis=axis, keepdims=True) ) assert_array_equal( toarray(X.min(axis=axis)), D.min(axis=axis, keepdims=True) ) for axis in [-2, 1]: with pytest.raises(ValueError, match="axis out of range"): X.min(axis=axis) with pytest.raises(ValueError, match="axis out of range"): X.max(axis=axis) def test_numpy_minmax(self, spcreator): dat = np.array([0, 1, 2]) datsp = spcreator(dat) assert_array_equal(np.min(datsp), np.min(dat)) assert_array_equal(np.max(datsp), np.max(dat)) def test_argmax(self, spcreator): D1 = np.array([-1, 5, 2, 3]) D2 = np.array([0, 0, -1, -2]) D3 = np.array([-1, -2, -3, -4]) D4 = np.array([1, 2, 3, 4]) D5 = np.array([1, 2, 0, 0]) for D in [D1, D2, D3, D4, D5]: mat = spcreator(D) assert_equal(mat.argmax(), np.argmax(D)) assert_equal(mat.argmin(), np.argmin(D)) assert_equal(mat.argmax(axis=0), np.argmax(D, axis=0)) assert_equal(mat.argmin(axis=0), np.argmin(D, axis=0)) D6 = np.empty((0,)) for axis in [None, 0]: mat = spcreator(D6) with pytest.raises(ValueError, match="to an empty matrix"): mat.argmin(axis=axis) with pytest.raises(ValueError, match="to an empty matrix"): mat.argmax(axis=axis) @pytest.mark.parametrize("spcreator", formats_for_minmax) class Test_ShapeMinMax2DWithAxis: def test_minmax(self, spcreator): dat = np.array([[-1, 5, 0, 3], [0, 0, -1, -2], [0, 0, 1, 2]]) datsp = spcreator(dat) for (spminmax, npminmax) in [ (datsp.min, np.min), (datsp.max, np.max), (datsp.nanmin, np.nanmin), (datsp.nanmax, np.nanmax), ]: for ax, result_shape in [(0, (4,)), (1, (3,))]: assert_equal(toarray(spminmax(axis=ax)), npminmax(dat, axis=ax)) assert_equal(spminmax(axis=ax).shape, result_shape) assert spminmax(axis=ax).format == "coo" for spminmax in [datsp.argmin, datsp.argmax]: for ax in [0, 1]: assert isinstance(spminmax(axis=ax), np.ndarray) # verify spmatrix behavior spmat_form = { 'coo': coo_matrix, 'csr': csr_matrix, 'csc': csc_matrix, 'bsr': bsr_matrix, } datspm = spmat_form[datsp.format](dat) for spm, npm in [ (datspm.min, np.min), (datspm.max, np.max), (datspm.nanmin, np.nanmin), (datspm.nanmax, np.nanmax), ]: for ax, result_shape in [(0, (1, 4)), (1, (3, 1))]: assert_equal(toarray(spm(axis=ax)), npm(dat, axis=ax, keepdims=True)) assert_equal(spm(axis=ax).shape, result_shape) assert spm(axis=ax).format == "coo" for spminmax in [datspm.argmin, datspm.argmax]: for ax in [0, 1]: assert isinstance(spminmax(axis=ax), np.ndarray)