This commit is contained in:
2024-11-29 18:15:30 +00:00
parent 40aade2d8e
commit bc9415586e
5298 changed files with 1938676 additions and 80 deletions

View File

@ -0,0 +1,17 @@
import mpmath
def f(x):
return (mpmath.pi + x + mpmath.sin(x)) / (2*mpmath.pi)
# Note: 40 digits might be overkill; a few more digits than the default
# might be sufficient.
mpmath.mp.dps = 40
ts = mpmath.taylor(f, -mpmath.pi, 20)
p, q = mpmath.pade(ts, 9, 10)
p = [float(c) for c in p]
q = [float(c) for c in q]
print('p =', p)
print('q =', q)

View File

@ -0,0 +1,54 @@
"""Precompute the polynomials for the asymptotic expansion of the
generalized exponential integral.
Sources
-------
[1] NIST, Digital Library of Mathematical Functions,
https://dlmf.nist.gov/8.20#ii
"""
import os
try:
import sympy
from sympy import Poly
x = sympy.symbols('x')
except ImportError:
pass
def generate_A(K):
A = [Poly(1, x)]
for k in range(K):
A.append(Poly(1 - 2*k*x, x)*A[k] + Poly(x*(x + 1))*A[k].diff())
return A
WARNING = """\
/* This file was automatically generated by _precompute/expn_asy.py.
* Do not edit it manually!
*/
"""
def main():
print(__doc__)
fn = os.path.join('..', 'cephes', 'expn.h')
K = 12
A = generate_A(K)
with open(fn + '.new', 'w') as f:
f.write(WARNING)
f.write(f"#define nA {len(A)}\n")
for k, Ak in enumerate(A):
', '.join([str(x.evalf(18)) for x in Ak.coeffs()])
f.write(f"static const double A{k}[] = {{tmp}};\n")
", ".join([f"A{k}" for k in range(K + 1)])
f.write("static const double *A[] = {{tmp}};\n")
", ".join([str(Ak.degree()) for Ak in A])
f.write("static const int Adegs[] = {{tmp}};\n")
os.rename(fn + '.new', fn)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,116 @@
"""
Precompute coefficients of Temme's asymptotic expansion for gammainc.
This takes about 8 hours to run on a 2.3 GHz Macbook Pro with 4GB ram.
Sources:
[1] NIST, "Digital Library of Mathematical Functions",
https://dlmf.nist.gov/
"""
import os
from scipy.special._precompute.utils import lagrange_inversion
try:
import mpmath as mp
except ImportError:
pass
def compute_a(n):
"""a_k from DLMF 5.11.6"""
a = [mp.sqrt(2)/2]
for k in range(1, n):
ak = a[-1]/k
for j in range(1, len(a)):
ak -= a[j]*a[-j]/(j + 1)
ak /= a[0]*(1 + mp.mpf(1)/(k + 1))
a.append(ak)
return a
def compute_g(n):
"""g_k from DLMF 5.11.3/5.11.5"""
a = compute_a(2*n)
g = [mp.sqrt(2)*mp.rf(0.5, k)*a[2*k] for k in range(n)]
return g
def eta(lam):
"""Function from DLMF 8.12.1 shifted to be centered at 0."""
if lam > 0:
return mp.sqrt(2*(lam - mp.log(lam + 1)))
elif lam < 0:
return -mp.sqrt(2*(lam - mp.log(lam + 1)))
else:
return 0
def compute_alpha(n):
"""alpha_n from DLMF 8.12.13"""
coeffs = mp.taylor(eta, 0, n - 1)
return lagrange_inversion(coeffs)
def compute_d(K, N):
"""d_{k, n} from DLMF 8.12.12"""
M = N + 2*K
d0 = [-mp.mpf(1)/3]
alpha = compute_alpha(M + 2)
for n in range(1, M):
d0.append((n + 2)*alpha[n+2])
d = [d0]
g = compute_g(K)
for k in range(1, K):
dk = []
for n in range(M - 2*k):
dk.append((-1)**k*g[k]*d[0][n] + (n + 2)*d[k-1][n+2])
d.append(dk)
for k in range(K):
d[k] = d[k][:N]
return d
header = \
r"""/* This file was automatically generated by _precomp/gammainc.py.
* Do not edit it manually!
*/
#ifndef IGAM_H
#define IGAM_H
#define K {}
#define N {}
static const double d[K][N] =
{{"""
footer = \
r"""
#endif
"""
def main():
print(__doc__)
K = 25
N = 25
with mp.workdps(50):
d = compute_d(K, N)
fn = os.path.join(os.path.dirname(__file__), '..', 'cephes', 'igam.h')
with open(fn + '.new', 'w') as f:
f.write(header.format(K, N))
for k, row in enumerate(d):
row = [mp.nstr(x, 17, min_fixed=0, max_fixed=0) for x in row]
f.write('{')
f.write(", ".join(row))
if k < K - 1:
f.write('},\n')
else:
f.write('}};\n')
f.write(footer)
os.rename(fn + '.new', fn)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,124 @@
"""Compute gammainc and gammaincc for large arguments and parameters
and save the values to data files for use in tests. We can't just
compare to mpmath's gammainc in test_mpmath.TestSystematic because it
would take too long.
Note that mpmath's gammainc is computed using hypercomb, but since it
doesn't allow the user to increase the maximum number of terms used in
the series it doesn't converge for many arguments. To get around this
we copy the mpmath implementation but use more terms.
This takes about 17 minutes to run on a 2.3 GHz Macbook Pro with 4GB
ram.
Sources:
[1] Fredrik Johansson and others. mpmath: a Python library for
arbitrary-precision floating-point arithmetic (version 0.19),
December 2013. http://mpmath.org/.
"""
import os
from time import time
import numpy as np
from numpy import pi
from scipy.special._mptestutils import mpf2float
try:
import mpmath as mp
except ImportError:
pass
def gammainc(a, x, dps=50, maxterms=10**8):
"""Compute gammainc exactly like mpmath does but allow for more
summands in hypercomb. See
mpmath/functions/expintegrals.py#L134
in the mpmath github repository.
"""
with mp.workdps(dps):
z, a, b = mp.mpf(a), mp.mpf(x), mp.mpf(x)
G = [z]
negb = mp.fneg(b, exact=True)
def h(z):
T1 = [mp.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b
return (T1,)
res = mp.hypercomb(h, [z], maxterms=maxterms)
return mpf2float(res)
def gammaincc(a, x, dps=50, maxterms=10**8):
"""Compute gammaincc exactly like mpmath does but allow for more
terms in hypercomb. See
mpmath/functions/expintegrals.py#L187
in the mpmath github repository.
"""
with mp.workdps(dps):
z, a = a, x
if mp.isint(z):
try:
# mpmath has a fast integer path
return mpf2float(mp.gammainc(z, a=a, regularized=True))
except mp.libmp.NoConvergence:
pass
nega = mp.fneg(a, exact=True)
G = [z]
# Use 2F0 series when possible; fall back to lower gamma representation
try:
def h(z):
r = z-1
return [([mp.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)]
return mpf2float(mp.hypercomb(h, [z], force_series=True))
except mp.libmp.NoConvergence:
def h(z):
T1 = [], [1, z-1], [z], G, [], [], 0
T2 = [-mp.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a
return T1, T2
return mpf2float(mp.hypercomb(h, [z], maxterms=maxterms))
def main():
t0 = time()
# It would be nice to have data for larger values, but either this
# requires prohibitively large precision (dps > 800) or mpmath has
# a bug. For example, gammainc(1e20, 1e20, dps=800) returns a
# value around 0.03, while the true value should be close to 0.5
# (DLMF 8.12.15).
print(__doc__)
pwd = os.path.dirname(__file__)
r = np.logspace(4, 14, 30)
ltheta = np.logspace(np.log10(pi/4), np.log10(np.arctan(0.6)), 30)
utheta = np.logspace(np.log10(pi/4), np.log10(np.arctan(1.4)), 30)
regimes = [(gammainc, ltheta), (gammaincc, utheta)]
for func, theta in regimes:
rg, thetag = np.meshgrid(r, theta)
a, x = rg*np.cos(thetag), rg*np.sin(thetag)
a, x = a.flatten(), x.flatten()
dataset = []
for i, (a0, x0) in enumerate(zip(a, x)):
if func == gammaincc:
# Exploit the fast integer path in gammaincc whenever
# possible so that the computation doesn't take too
# long
a0, x0 = np.floor(a0), np.floor(x0)
dataset.append((a0, x0, func(a0, x0)))
dataset = np.array(dataset)
filename = os.path.join(pwd, '..', 'tests', 'data', 'local',
f'{func.__name__}.txt')
np.savetxt(filename, dataset)
print(f"{(time() - t0)/60} minutes elapsed")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,484 @@
"""This script evaluates scipy's implementation of hyp2f1 against mpmath's.
Author: Albert Steppi
This script is long running and generates a large output file. With default
arguments, the generated file is roughly 700MB in size and it takes around
40 minutes using an Intel(R) Core(TM) i5-8250U CPU with n_jobs set to 8
(full utilization). There are optional arguments which can be used to restrict
(or enlarge) the computations performed. These are described below.
The output of this script can be analyzed to identify suitable test cases and
to find parameter and argument regions where hyp2f1 needs to be improved.
The script has one mandatory positional argument for specifying the path to
the location where the output file is to be placed, and 4 optional arguments
--n_jobs, --grid_size, --regions, and --parameter_groups. --n_jobs specifies
the number of processes to use if running in parallel. The default value is 1.
The other optional arguments are explained below.
Produces a tab separated values file with 11 columns. The first four columns
contain the parameters a, b, c and the argument z. The next two contain |z| and
a region code for which region of the complex plane belongs to. The regions are
0) z == 1
1) |z| < 0.9 and real(z) >= 0
2) |z| <= 1 and real(z) < 0
3) 0.9 <= |z| <= 1 and |1 - z| < 0.9:
4) 0.9 <= |z| <= 1 and |1 - z| >= 0.9 and real(z) >= 0:
5) 1 < |z| < 1.1 and |1 - z| >= 0.9 and real(z) >= 0
6) |z| > 1 and not in 5)
The --regions optional argument allows the user to specify a list of regions
to which computation will be restricted.
Parameters a, b, c are taken from a 10 * 10 * 10 grid with values at
-16, -8, -4, -2, -1, 1, 2, 4, 8, 16
with random perturbations applied.
There are 9 parameter groups handling the following cases.
1) A, B, C, B - A, C - A, C - B, C - A - B all non-integral.
2) B - A integral
3) C - A integral
4) C - B integral
5) C - A - B integral
6) A integral
7) B integral
8) C integral
9) Wider range with c - a - b > 0.
The seventh column of the output file is an integer between 1 and 8 specifying
the parameter group as above.
The --parameter_groups optional argument allows the user to specify a list of
parameter groups to which computation will be restricted.
The argument z is taken from a grid in the box
-box_size <= real(z) <= box_size, -box_size <= imag(z) <= box_size.
with grid size specified using the optional command line argument --grid_size,
and box_size specified with the command line argument --box_size.
The default value of grid_size is 20 and the default value of box_size is 2.0,
yielding a 20 * 20 grid in the box with corners -2-2j, -2+2j, 2-2j, 2+2j.
The final four columns have the expected value of hyp2f1 for the given
parameters and argument as calculated with mpmath, the observed value
calculated with scipy's hyp2f1, the relative error, and the absolute error.
As special cases of hyp2f1 are moved from the original Fortran implementation
into Cython, this script can be used to ensure that no regressions occur and
to point out where improvements are needed.
"""
import os
import csv
import argparse
import numpy as np
from itertools import product
from multiprocessing import Pool
from scipy.special import hyp2f1
from scipy.special.tests.test_hyp2f1 import mp_hyp2f1
def get_region(z):
"""Assign numbers for regions where hyp2f1 must be handled differently."""
if z == 1 + 0j:
return 0
elif abs(z) < 0.9 and z.real >= 0:
return 1
elif abs(z) <= 1 and z.real < 0:
return 2
elif 0.9 <= abs(z) <= 1 and abs(1 - z) < 0.9:
return 3
elif 0.9 <= abs(z) <= 1 and abs(1 - z) >= 0.9:
return 4
elif 1 < abs(z) < 1.1 and abs(1 - z) >= 0.9 and z.real >= 0:
return 5
else:
return 6
def get_result(a, b, c, z, group):
"""Get results for given parameter and value combination."""
expected, observed = mp_hyp2f1(a, b, c, z), hyp2f1(a, b, c, z)
if (
np.isnan(observed) and np.isnan(expected) or
expected == observed
):
relative_error = 0.0
absolute_error = 0.0
elif np.isnan(observed):
# Set error to infinity if result is nan when not expected to be.
# Makes results easier to interpret.
relative_error = float("inf")
absolute_error = float("inf")
else:
absolute_error = abs(expected - observed)
relative_error = absolute_error / abs(expected)
return (
a,
b,
c,
z,
abs(z),
get_region(z),
group,
expected,
observed,
relative_error,
absolute_error,
)
def get_result_no_mp(a, b, c, z, group):
"""Get results for given parameter and value combination."""
expected, observed = complex('nan'), hyp2f1(a, b, c, z)
relative_error, absolute_error = float('nan'), float('nan')
return (
a,
b,
c,
z,
abs(z),
get_region(z),
group,
expected,
observed,
relative_error,
absolute_error,
)
def get_results(params, Z, n_jobs=1, compute_mp=True):
"""Batch compute results for multiple parameter and argument values.
Parameters
----------
params : iterable
iterable of tuples of floats (a, b, c) specifying parameter values
a, b, c for hyp2f1
Z : iterable of complex
Arguments at which to evaluate hyp2f1
n_jobs : Optional[int]
Number of jobs for parallel execution.
Returns
-------
list
List of tuples of results values. See return value in source code
of `get_result`.
"""
input_ = (
(a, b, c, z, group) for (a, b, c, group), z in product(params, Z)
)
with Pool(n_jobs) as pool:
rows = pool.starmap(
get_result if compute_mp else get_result_no_mp,
input_
)
return rows
def _make_hyp2f1_test_case(a, b, c, z, rtol):
"""Generate string for single test case as used in test_hyp2f1.py."""
expected = mp_hyp2f1(a, b, c, z)
return (
" pytest.param(\n"
" Hyp2f1TestCase(\n"
f" a={a},\n"
f" b={b},\n"
f" c={c},\n"
f" z={z},\n"
f" expected={expected},\n"
f" rtol={rtol},\n"
" ),\n"
" ),"
)
def make_hyp2f1_test_cases(rows):
"""Generate string for a list of test cases for test_hyp2f1.py.
Parameters
----------
rows : list
List of lists of the form [a, b, c, z, rtol] where a, b, c, z are
parameters and the argument for hyp2f1 and rtol is an expected
relative error for the associated test case.
Returns
-------
str
String for a list of test cases. The output string can be printed
or saved to a file and then copied into an argument for
`pytest.mark.parameterize` within `scipy.special.tests.test_hyp2f1.py`.
"""
result = "[\n"
result += '\n'.join(
_make_hyp2f1_test_case(a, b, c, z, rtol)
for a, b, c, z, rtol in rows
)
result += "\n]"
return result
def main(
outpath,
n_jobs=1,
box_size=2.0,
grid_size=20,
regions=None,
parameter_groups=None,
compute_mp=True,
):
outpath = os.path.realpath(os.path.expanduser(outpath))
random_state = np.random.RandomState(1234)
# Parameters a, b, c selected near these values.
root_params = np.array(
[-16, -8, -4, -2, -1, 1, 2, 4, 8, 16]
)
# Perturbations to apply to root values.
perturbations = 0.1 * random_state.random_sample(
size=(3, len(root_params))
)
params = []
# Parameter group 1
# -----------------
# No integer differences. This has been confirmed for the above seed.
A = root_params + perturbations[0, :]
B = root_params + perturbations[1, :]
C = root_params + perturbations[2, :]
params.extend(
sorted(
((a, b, c, 1) for a, b, c in product(A, B, C)),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
)
# Parameter group 2
# -----------------
# B - A an integer
A = root_params + 0.5
B = root_params + 0.5
C = root_params + perturbations[1, :]
params.extend(
sorted(
((a, b, c, 2) for a, b, c in product(A, B, C)),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
)
# Parameter group 3
# -----------------
# C - A an integer
A = root_params + 0.5
B = root_params + perturbations[1, :]
C = root_params + 0.5
params.extend(
sorted(
((a, b, c, 3) for a, b, c in product(A, B, C)),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
)
# Parameter group 4
# -----------------
# C - B an integer
A = root_params + perturbations[0, :]
B = root_params + 0.5
C = root_params + 0.5
params.extend(
sorted(
((a, b, c, 4) for a, b, c in product(A, B, C)),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
)
# Parameter group 5
# -----------------
# C - A - B an integer
A = root_params + 0.25
B = root_params + 0.25
C = root_params + 0.5
params.extend(
sorted(
((a, b, c, 5) for a, b, c in product(A, B, C)),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
)
# Parameter group 6
# -----------------
# A an integer
A = root_params
B = root_params + perturbations[0, :]
C = root_params + perturbations[1, :]
params.extend(
sorted(
((a, b, c, 6) for a, b, c in product(A, B, C)),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
)
# Parameter group 7
# -----------------
# B an integer
A = root_params + perturbations[0, :]
B = root_params
C = root_params + perturbations[1, :]
params.extend(
sorted(
((a, b, c, 7) for a, b, c in product(A, B, C)),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
)
# Parameter group 8
# -----------------
# C an integer
A = root_params + perturbations[0, :]
B = root_params + perturbations[1, :]
C = root_params
params.extend(
sorted(
((a, b, c, 8) for a, b, c in product(A, B, C)),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
)
# Parameter group 9
# -----------------
# Wide range of magnitudes, c - a - b > 0.
phi = (1 + np.sqrt(5))/2
P = phi**np.arange(16)
P = np.hstack([-P, P])
group_9_params = sorted(
(
(a, b, c, 9) for a, b, c in product(P, P, P) if c - a - b > 0
),
key=lambda x: max(abs(x[0]), abs(x[1])),
)
if parameter_groups is not None:
# Group 9 params only used if specified in arguments.
params.extend(group_9_params)
params = [
(a, b, c, group) for a, b, c, group in params
if group in parameter_groups
]
# grid_size * grid_size grid in box with corners
# -2 - 2j, -2 + 2j, 2 - 2j, 2 + 2j
X, Y = np.meshgrid(
np.linspace(-box_size, box_size, grid_size),
np.linspace(-box_size, box_size, grid_size)
)
Z = X + Y * 1j
Z = Z.flatten().tolist()
# Add z = 1 + 0j (region 0).
Z.append(1 + 0j)
if regions is not None:
Z = [z for z in Z if get_region(z) in regions]
# Evaluate scipy and mpmath's hyp2f1 for all parameter combinations
# above against all arguments in the grid Z
rows = get_results(params, Z, n_jobs=n_jobs, compute_mp=compute_mp)
with open(outpath, "w", newline="") as f:
writer = csv.writer(f, delimiter="\t")
writer.writerow(
[
"a",
"b",
"c",
"z",
"|z|",
"region",
"parameter_group",
"expected", # mpmath's hyp2f1
"observed", # scipy's hyp2f1
"relative_error",
"absolute_error",
]
)
for row in rows:
writer.writerow(row)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Test scipy's hyp2f1 against mpmath's on a grid in the"
" complex plane over a grid of parameter values. Saves output to file"
" specified in positional argument \"outpath\"."
" Caution: With default arguments, the generated output file is"
" roughly 700MB in size. Script may take several hours to finish if"
" \"--n_jobs\" is set to 1."
)
parser.add_argument(
"outpath", type=str, help="Path to output tsv file."
)
parser.add_argument(
"--n_jobs",
type=int,
default=1,
help="Number of jobs for multiprocessing.",
)
parser.add_argument(
"--box_size",
type=float,
default=2.0,
help="hyp2f1 is evaluated in box of side_length 2*box_size centered"
" at the origin."
)
parser.add_argument(
"--grid_size",
type=int,
default=20,
help="hyp2f1 is evaluated on grid_size * grid_size grid in box of side"
" length 2*box_size centered at the origin."
)
parser.add_argument(
"--parameter_groups",
type=int,
nargs='+',
default=None,
help="Restrict to supplied parameter groups. See the Docstring for"
" this module for more info on parameter groups. Calculate for all"
" parameter groups by default."
)
parser.add_argument(
"--regions",
type=int,
nargs='+',
default=None,
help="Restrict to argument z only within the supplied regions. See"
" the Docstring for this module for more info on regions. Calculate"
" for all regions by default."
)
parser.add_argument(
"--no_mp",
action='store_true',
help="If this flag is set, do not compute results with mpmath. Saves"
" time if results have already been computed elsewhere. Fills in"
" \"expected\" column with None values."
)
args = parser.parse_args()
compute_mp = not args.no_mp
print(args.parameter_groups)
main(
args.outpath,
n_jobs=args.n_jobs,
box_size=args.box_size,
grid_size=args.grid_size,
parameter_groups=args.parameter_groups,
regions=args.regions,
compute_mp=compute_mp,
)

View File

@ -0,0 +1,68 @@
"""Compute a Pade approximation for the principal branch of the
Lambert W function around 0 and compare it to various other
approximations.
"""
import numpy as np
try:
import mpmath
import matplotlib.pyplot as plt
except ImportError:
pass
def lambertw_pade():
derivs = [mpmath.diff(mpmath.lambertw, 0, n=n) for n in range(6)]
p, q = mpmath.pade(derivs, 3, 2)
return p, q
def main():
print(__doc__)
with mpmath.workdps(50):
p, q = lambertw_pade()
p, q = p[::-1], q[::-1]
print(f"p = {p}")
print(f"q = {q}")
x, y = np.linspace(-1.5, 1.5, 75), np.linspace(-1.5, 1.5, 75)
x, y = np.meshgrid(x, y)
z = x + 1j*y
lambertw_std = []
for z0 in z.flatten():
lambertw_std.append(complex(mpmath.lambertw(z0)))
lambertw_std = np.array(lambertw_std).reshape(x.shape)
fig, axes = plt.subplots(nrows=3, ncols=1)
# Compare Pade approximation to true result
p = np.array([float(p0) for p0 in p])
q = np.array([float(q0) for q0 in q])
pade_approx = np.polyval(p, z)/np.polyval(q, z)
pade_err = abs(pade_approx - lambertw_std)
axes[0].pcolormesh(x, y, pade_err)
# Compare two terms of asymptotic series to true result
asy_approx = np.log(z) - np.log(np.log(z))
asy_err = abs(asy_approx - lambertw_std)
axes[1].pcolormesh(x, y, asy_err)
# Compare two terms of the series around the branch point to the
# true result
p = np.sqrt(2*(np.exp(1)*z + 1))
series_approx = -1 + p - p**2/3
series_err = abs(series_approx - lambertw_std)
im = axes[2].pcolormesh(x, y, series_err)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
fig, ax = plt.subplots(nrows=1, ncols=1)
pade_better = pade_err < asy_err
im = ax.pcolormesh(x, y, pade_better)
t = np.linspace(-0.3, 0.3)
ax.plot(-2.5*abs(t) - 0.2, t, 'r')
fig.colorbar(im, ax=ax)
plt.show()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,43 @@
"""Precompute series coefficients for log-Gamma."""
try:
import mpmath
except ImportError:
pass
def stirling_series(N):
with mpmath.workdps(100):
coeffs = [mpmath.bernoulli(2*n)/(2*n*(2*n - 1))
for n in range(1, N + 1)]
return coeffs
def taylor_series_at_1(N):
coeffs = []
with mpmath.workdps(100):
coeffs.append(-mpmath.euler)
for n in range(2, N + 1):
coeffs.append((-1)**n*mpmath.zeta(n)/n)
return coeffs
def main():
print(__doc__)
print()
stirling_coeffs = [mpmath.nstr(x, 20, min_fixed=0, max_fixed=0)
for x in stirling_series(8)[::-1]]
taylor_coeffs = [mpmath.nstr(x, 20, min_fixed=0, max_fixed=0)
for x in taylor_series_at_1(23)[::-1]]
print("Stirling series coefficients")
print("----------------------------")
print("\n".join(stirling_coeffs))
print()
print("Taylor series coefficients")
print("--------------------------")
print("\n".join(taylor_coeffs))
print()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,131 @@
"""
Convergence regions of the expansions used in ``struve.c``
Note that for v >> z both functions tend rapidly to 0,
and for v << -z, they tend to infinity.
The floating-point functions over/underflow in the lower left and right
corners of the figure.
Figure legend
=============
Red region
Power series is close (1e-12) to the mpmath result
Blue region
Asymptotic series is close to the mpmath result
Green region
Bessel series is close to the mpmath result
Dotted colored lines
Boundaries of the regions
Solid colored lines
Boundaries estimated by the routine itself. These will be used
for determining which of the results to use.
Black dashed line
The line z = 0.7*|v| + 12
"""
import numpy as np
import matplotlib.pyplot as plt
import mpmath
def err_metric(a, b, atol=1e-290):
m = abs(a - b) / (atol + abs(b))
m[np.isinf(b) & (a == b)] = 0
return m
def do_plot(is_h=True):
from scipy.special._ufuncs import (_struve_power_series,
_struve_asymp_large_z,
_struve_bessel_series)
vs = np.linspace(-1000, 1000, 91)
zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]])
rp = _struve_power_series(vs[:,None], zs[None,:], is_h)
ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h)
rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h)
mpmath.mp.dps = 50
if is_h:
def sh(v, z):
return float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z)))
else:
def sh(v, z):
return float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z)))
ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:])
err_a = err_metric(ra[0], ex) + 1e-300
err_p = err_metric(rp[0], ex) + 1e-300
err_b = err_metric(rb[0], ex) + 1e-300
err_est_a = abs(ra[1]/ra[0])
err_est_p = abs(rp[1]/rp[0])
err_est_b = abs(rb[1]/rb[0])
z_cutoff = 0.7*abs(vs) + 12
levels = [-1000, -12]
plt.cla()
plt.hold(1)
plt.contourf(vs, zs, np.log10(err_p).T,
levels=levels, colors=['r', 'r'], alpha=0.1)
plt.contourf(vs, zs, np.log10(err_a).T,
levels=levels, colors=['b', 'b'], alpha=0.1)
plt.contourf(vs, zs, np.log10(err_b).T,
levels=levels, colors=['g', 'g'], alpha=0.1)
plt.contour(vs, zs, np.log10(err_p).T,
levels=levels, colors=['r', 'r'], linestyles=[':', ':'])
plt.contour(vs, zs, np.log10(err_a).T,
levels=levels, colors=['b', 'b'], linestyles=[':', ':'])
plt.contour(vs, zs, np.log10(err_b).T,
levels=levels, colors=['g', 'g'], linestyles=[':', ':'])
lp = plt.contour(vs, zs, np.log10(err_est_p).T,
levels=levels, colors=['r', 'r'], linestyles=['-', '-'])
la = plt.contour(vs, zs, np.log10(err_est_a).T,
levels=levels, colors=['b', 'b'], linestyles=['-', '-'])
lb = plt.contour(vs, zs, np.log10(err_est_b).T,
levels=levels, colors=['g', 'g'], linestyles=['-', '-'])
plt.clabel(lp, fmt={-1000: 'P', -12: 'P'})
plt.clabel(la, fmt={-1000: 'A', -12: 'A'})
plt.clabel(lb, fmt={-1000: 'B', -12: 'B'})
plt.plot(vs, z_cutoff, 'k--')
plt.xlim(vs.min(), vs.max())
plt.ylim(zs.min(), zs.max())
plt.xlabel('v')
plt.ylabel('z')
def main():
plt.clf()
plt.subplot(121)
do_plot(True)
plt.title('Struve H')
plt.subplot(122)
do_plot(False)
plt.title('Struve L')
plt.savefig('struve_convergence.png')
plt.show()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,38 @@
try:
import mpmath as mp
except ImportError:
pass
try:
from sympy.abc import x
except ImportError:
pass
def lagrange_inversion(a):
"""Given a series
f(x) = a[1]*x + a[2]*x**2 + ... + a[n-1]*x**(n - 1),
use the Lagrange inversion formula to compute a series
g(x) = b[1]*x + b[2]*x**2 + ... + b[n-1]*x**(n - 1)
so that f(g(x)) = g(f(x)) = x mod x**n. We must have a[0] = 0, so
necessarily b[0] = 0 too.
The algorithm is naive and could be improved, but speed isn't an
issue here and it's easy to read.
"""
n = len(a)
f = sum(a[i]*x**i for i in range(n))
h = (x/f).series(x, 0, n).removeO()
hpower = [h**0]
for k in range(n):
hpower.append((hpower[-1]*h).expand())
b = [mp.mpf(0)]
for k in range(1, n):
b.append(hpower[k].coeff(x, k - 1)/k)
b = [mp.mpf(x) for x in b]
return b

View File

@ -0,0 +1,342 @@
"""Precompute coefficients of several series expansions
of Wright's generalized Bessel function Phi(a, b, x).
See https://dlmf.nist.gov/10.46.E1 with rho=a, beta=b, z=x.
"""
from argparse import ArgumentParser, RawTextHelpFormatter
import numpy as np
from scipy.integrate import quad
from scipy.optimize import minimize_scalar, curve_fit
from time import time
try:
import sympy
from sympy import EulerGamma, Rational, S, Sum, \
factorial, gamma, gammasimp, pi, polygamma, symbols, zeta
from sympy.polys.polyfuncs import horner
except ImportError:
pass
def series_small_a():
"""Tylor series expansion of Phi(a, b, x) in a=0 up to order 5.
"""
order = 5
a, b, x, k = symbols("a b x k")
A = [] # terms with a
X = [] # terms with x
B = [] # terms with b (polygammas)
# Phi(a, b, x) = exp(x)/gamma(b) * sum(A[i] * X[i] * B[i])
expression = Sum(x**k/factorial(k)/gamma(a*k+b), (k, 0, S.Infinity))
expression = gamma(b)/sympy.exp(x) * expression
# nth term of taylor series in a=0: a^n/n! * (d^n Phi(a, b, x)/da^n at a=0)
for n in range(0, order+1):
term = expression.diff(a, n).subs(a, 0).simplify().doit()
# set the whole bracket involving polygammas to 1
x_part = (term.subs(polygamma(0, b), 1)
.replace(polygamma, lambda *args: 0))
# sign convention: x part always positive
x_part *= (-1)**n
A.append(a**n/factorial(n))
X.append(horner(x_part))
B.append(horner((term/x_part).simplify()))
s = "Tylor series expansion of Phi(a, b, x) in a=0 up to order 5.\n"
s += "Phi(a, b, x) = exp(x)/gamma(b) * sum(A[i] * X[i] * B[i], i=0..5)\n"
for name, c in zip(['A', 'X', 'B'], [A, X, B]):
for i in range(len(c)):
s += f"\n{name}[{i}] = " + str(c[i])
return s
# expansion of digamma
def dg_series(z, n):
"""Symbolic expansion of digamma(z) in z=0 to order n.
See https://dlmf.nist.gov/5.7.E4 and with https://dlmf.nist.gov/5.5.E2
"""
k = symbols("k")
return -1/z - EulerGamma + \
sympy.summation((-1)**k * zeta(k) * z**(k-1), (k, 2, n+1))
def pg_series(k, z, n):
"""Symbolic expansion of polygamma(k, z) in z=0 to order n."""
return sympy.diff(dg_series(z, n+k), z, k)
def series_small_a_small_b():
"""Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5.
Be aware of cancellation of poles in b=0 of digamma(b)/Gamma(b) and
polygamma functions.
digamma(b)/Gamma(b) = -1 - 2*M_EG*b + O(b^2)
digamma(b)^2/Gamma(b) = 1/b + 3*M_EG + b*(-5/12*PI^2+7/2*M_EG^2) + O(b^2)
polygamma(1, b)/Gamma(b) = 1/b + M_EG + b*(1/12*PI^2 + 1/2*M_EG^2) + O(b^2)
and so on.
"""
order = 5
a, b, x, k = symbols("a b x k")
M_PI, M_EG, M_Z3 = symbols("M_PI M_EG M_Z3")
c_subs = {pi: M_PI, EulerGamma: M_EG, zeta(3): M_Z3}
A = [] # terms with a
X = [] # terms with x
B = [] # terms with b (polygammas expanded)
C = [] # terms that generate B
# Phi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i])
# B[0] = 1
# B[k] = sum(C[k] * b**k/k!, k=0..)
# Note: C[k] can be obtained from a series expansion of 1/gamma(b).
expression = gamma(b)/sympy.exp(x) * \
Sum(x**k/factorial(k)/gamma(a*k+b), (k, 0, S.Infinity))
# nth term of taylor series in a=0: a^n/n! * (d^n Phi(a, b, x)/da^n at a=0)
for n in range(0, order+1):
term = expression.diff(a, n).subs(a, 0).simplify().doit()
# set the whole bracket involving polygammas to 1
x_part = (term.subs(polygamma(0, b), 1)
.replace(polygamma, lambda *args: 0))
# sign convention: x part always positive
x_part *= (-1)**n
# expansion of polygamma part with 1/gamma(b)
pg_part = term/x_part/gamma(b)
if n >= 1:
# Note: highest term is digamma^n
pg_part = pg_part.replace(polygamma,
lambda k, x: pg_series(k, x, order+1+n))
pg_part = (pg_part.series(b, 0, n=order+1-n)
.removeO()
.subs(polygamma(2, 1), -2*zeta(3))
.simplify()
)
A.append(a**n/factorial(n))
X.append(horner(x_part))
B.append(pg_part)
# Calculate C and put in the k!
C = sympy.Poly(B[1].subs(c_subs), b).coeffs()
C.reverse()
for i in range(len(C)):
C[i] = (C[i] * factorial(i)).simplify()
s = "Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5."
s += "\nPhi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i], i=0..5)\n"
s += "B[0] = 1\n"
s += "B[i] = sum(C[k+i-1] * b**k/k!, k=0..)\n"
s += "\nM_PI = pi"
s += "\nM_EG = EulerGamma"
s += "\nM_Z3 = zeta(3)"
for name, c in zip(['A', 'X'], [A, X]):
for i in range(len(c)):
s += f"\n{name}[{i}] = "
s += str(c[i])
# For C, do also compute the values numerically
for i in range(len(C)):
s += f"\n# C[{i}] = "
s += str(C[i])
s += f"\nC[{i}] = "
s += str(C[i].subs({M_EG: EulerGamma, M_PI: pi, M_Z3: zeta(3)})
.evalf(17))
# Does B have the assumed structure?
s += "\n\nTest if B[i] does have the assumed structure."
s += "\nC[i] are derived from B[1] alone."
s += "\nTest B[2] == C[1] + b*C[2] + b^2/2*C[3] + b^3/6*C[4] + .."
test = sum([b**k/factorial(k) * C[k+1] for k in range(order-1)])
test = (test - B[2].subs(c_subs)).simplify()
s += f"\ntest successful = {test==S(0)}"
s += "\nTest B[3] == C[2] + b*C[3] + b^2/2*C[4] + .."
test = sum([b**k/factorial(k) * C[k+2] for k in range(order-2)])
test = (test - B[3].subs(c_subs)).simplify()
s += f"\ntest successful = {test==S(0)}"
return s
def asymptotic_series():
"""Asymptotic expansion for large x.
Phi(a, b, x) ~ Z^(1/2-b) * exp((1+a)/a * Z) * sum_k (-1)^k * C_k / Z^k
Z = (a*x)^(1/(1+a))
Wright (1935) lists the coefficients C_0 and C_1 (he calls them a_0 and
a_1). With slightly different notation, Paris (2017) lists coefficients
c_k up to order k=3.
Paris (2017) uses ZP = (1+a)/a * Z (ZP = Z of Paris) and
C_k = C_0 * (-a/(1+a))^k * c_k
"""
order = 8
class g(sympy.Function):
"""Helper function g according to Wright (1935)
g(n, rho, v) = (1 + (rho+2)/3 * v + (rho+2)*(rho+3)/(2*3) * v^2 + ...)
Note: Wright (1935) uses square root of above definition.
"""
nargs = 3
@classmethod
def eval(cls, n, rho, v):
if not n >= 0:
raise ValueError("must have n >= 0")
elif n == 0:
return 1
else:
return g(n-1, rho, v) \
+ gammasimp(gamma(rho+2+n)/gamma(rho+2)) \
/ gammasimp(gamma(3+n)/gamma(3))*v**n
class coef_C(sympy.Function):
"""Calculate coefficients C_m for integer m.
C_m is the coefficient of v^(2*m) in the Taylor expansion in v=0 of
Gamma(m+1/2)/(2*pi) * (2/(rho+1))^(m+1/2) * (1-v)^(-b)
* g(rho, v)^(-m-1/2)
"""
nargs = 3
@classmethod
def eval(cls, m, rho, beta):
if not m >= 0:
raise ValueError("must have m >= 0")
v = symbols("v")
expression = (1-v)**(-beta) * g(2*m, rho, v)**(-m-Rational(1, 2))
res = expression.diff(v, 2*m).subs(v, 0) / factorial(2*m)
res = res * (gamma(m + Rational(1, 2)) / (2*pi)
* (2/(rho+1))**(m + Rational(1, 2)))
return res
# in order to have nice ordering/sorting of expressions, we set a = xa.
xa, b, xap1 = symbols("xa b xap1")
C0 = coef_C(0, xa, b)
# a1 = a(1, rho, beta)
s = "Asymptotic expansion for large x\n"
s += "Phi(a, b, x) = Z**(1/2-b) * exp((1+a)/a * Z) \n"
s += " * sum((-1)**k * C[k]/Z**k, k=0..6)\n\n"
s += "Z = pow(a * x, 1/(1+a))\n"
s += "A[k] = pow(a, k)\n"
s += "B[k] = pow(b, k)\n"
s += "Ap1[k] = pow(1+a, k)\n\n"
s += "C[0] = 1./sqrt(2. * M_PI * Ap1[1])\n"
for i in range(1, order+1):
expr = (coef_C(i, xa, b) / (C0/(1+xa)**i)).simplify()
factor = [x.denominator() for x in sympy.Poly(expr).coeffs()]
factor = sympy.lcm(factor)
expr = (expr * factor).simplify().collect(b, sympy.factor)
expr = expr.xreplace({xa+1: xap1})
s += f"C[{i}] = C[0] / ({factor} * Ap1[{i}])\n"
s += f"C[{i}] *= {str(expr)}\n\n"
import re
re_a = re.compile(r'xa\*\*(\d+)')
s = re_a.sub(r'A[\1]', s)
re_b = re.compile(r'b\*\*(\d+)')
s = re_b.sub(r'B[\1]', s)
s = s.replace('xap1', 'Ap1[1]')
s = s.replace('xa', 'a')
# max integer = 2^31-1 = 2,147,483,647. Solution: Put a point after 10
# or more digits.
re_digits = re.compile(r'(\d{10,})')
s = re_digits.sub(r'\1.', s)
return s
def optimal_epsilon_integral():
"""Fit optimal choice of epsilon for integral representation.
The integrand of
int_0^pi P(eps, a, b, x, phi) * dphi
can exhibit oscillatory behaviour. It stems from the cosine of P and can be
minimized by minimizing the arc length of the argument
f(phi) = eps * sin(phi) - x * eps^(-a) * sin(a * phi) + (1 - b) * phi
of cos(f(phi)).
We minimize the arc length in eps for a grid of values (a, b, x) and fit a
parametric function to it.
"""
def fp(eps, a, b, x, phi):
"""Derivative of f w.r.t. phi."""
eps_a = np.power(1. * eps, -a)
return eps * np.cos(phi) - a * x * eps_a * np.cos(a * phi) + 1 - b
def arclength(eps, a, b, x, epsrel=1e-2, limit=100):
"""Compute Arc length of f.
Note that the arc length of a function f from t0 to t1 is given by
int_t0^t1 sqrt(1 + f'(t)^2) dt
"""
return quad(lambda phi: np.sqrt(1 + fp(eps, a, b, x, phi)**2),
0, np.pi,
epsrel=epsrel, limit=100)[0]
# grid of minimal arc length values
data_a = [1e-3, 0.1, 0.5, 0.9, 1, 2, 4, 5, 6, 8]
data_b = [0, 1, 4, 7, 10]
data_x = [1, 1.5, 2, 4, 10, 20, 50, 100, 200, 500, 1e3, 5e3, 1e4]
data_a, data_b, data_x = np.meshgrid(data_a, data_b, data_x)
data_a, data_b, data_x = (data_a.flatten(), data_b.flatten(),
data_x.flatten())
best_eps = []
for i in range(data_x.size):
best_eps.append(
minimize_scalar(lambda eps: arclength(eps, data_a[i], data_b[i],
data_x[i]),
bounds=(1e-3, 1000),
method='Bounded', options={'xatol': 1e-3}).x
)
best_eps = np.array(best_eps)
# pandas would be nice, but here a dictionary is enough
df = {'a': data_a,
'b': data_b,
'x': data_x,
'eps': best_eps,
}
def func(data, A0, A1, A2, A3, A4, A5):
"""Compute parametric function to fit."""
a = data['a']
b = data['b']
x = data['x']
return (A0 * b * np.exp(-0.5 * a)
+ np.exp(A1 + 1 / (1 + a) * np.log(x) - A2 * np.exp(-A3 * a)
+ A4 / (1 + np.exp(A5 * a))))
func_params = list(curve_fit(func, df, df['eps'], method='trf')[0])
s = "Fit optimal eps for integrand P via minimal arc length\n"
s += "with parametric function:\n"
s += "optimal_eps = (A0 * b * exp(-a/2) + exp(A1 + 1 / (1 + a) * log(x)\n"
s += " - A2 * exp(-A3 * a) + A4 / (1 + exp(A5 * a)))\n\n"
s += "Fitted parameters A0 to A5 are:\n"
s += ', '.join([f'{x:.5g}' for x in func_params])
return s
def main():
t0 = time()
parser = ArgumentParser(description=__doc__,
formatter_class=RawTextHelpFormatter)
parser.add_argument('action', type=int, choices=[1, 2, 3, 4],
help='chose what expansion to precompute\n'
'1 : Series for small a\n'
'2 : Series for small a and small b\n'
'3 : Asymptotic series for large x\n'
' This may take some time (>4h).\n'
'4 : Fit optimal eps for integral representation.'
)
args = parser.parse_args()
switch = {1: lambda: print(series_small_a()),
2: lambda: print(series_small_a_small_b()),
3: lambda: print(asymptotic_series()),
4: lambda: print(optimal_epsilon_integral())
}
switch.get(args.action, lambda: print("Invalid input."))()
print(f"\n{(time() - t0)/60:.1f} minutes elapsed.\n")
if __name__ == '__main__':
main()

View File

@ -0,0 +1,152 @@
"""Compute a grid of values for Wright's generalized Bessel function
and save the values to data files for use in tests. Using mpmath directly in
tests would take too long.
This takes about 10 minutes to run on a 2.7 GHz i7 Macbook Pro.
"""
from functools import lru_cache
import os
from time import time
import numpy as np
from scipy.special._mptestutils import mpf2float
try:
import mpmath as mp
except ImportError:
pass
# exp_inf: smallest value x for which exp(x) == inf
exp_inf = 709.78271289338403
# 64 Byte per value
@lru_cache(maxsize=100_000)
def rgamma_cached(x, dps):
with mp.workdps(dps):
return mp.rgamma(x)
def mp_wright_bessel(a, b, x, dps=50, maxterms=2000):
"""Compute Wright's generalized Bessel function as Series with mpmath.
"""
with mp.workdps(dps):
a, b, x = mp.mpf(a), mp.mpf(b), mp.mpf(x)
res = mp.nsum(lambda k: x**k / mp.fac(k)
* rgamma_cached(a * k + b, dps=dps),
[0, mp.inf],
tol=dps, method='s', steps=[maxterms]
)
return mpf2float(res)
def main():
t0 = time()
print(__doc__)
pwd = os.path.dirname(__file__)
eps = np.finfo(float).eps * 100
a_range = np.array([eps,
1e-4 * (1 - eps), 1e-4, 1e-4 * (1 + eps),
1e-3 * (1 - eps), 1e-3, 1e-3 * (1 + eps),
0.1, 0.5,
1 * (1 - eps), 1, 1 * (1 + eps),
1.5, 2, 4.999, 5, 10])
b_range = np.array([0, eps, 1e-10, 1e-5, 0.1, 1, 2, 10, 20, 100])
x_range = np.array([0, eps, 1 - eps, 1, 1 + eps,
1.5,
2 - eps, 2, 2 + eps,
9 - eps, 9, 9 + eps,
10 * (1 - eps), 10, 10 * (1 + eps),
100 * (1 - eps), 100, 100 * (1 + eps),
500, exp_inf, 1e3, 1e5, 1e10, 1e20])
a_range, b_range, x_range = np.meshgrid(a_range, b_range, x_range,
indexing='ij')
a_range = a_range.flatten()
b_range = b_range.flatten()
x_range = x_range.flatten()
# filter out some values, especially too large x
bool_filter = ~((a_range < 5e-3) & (x_range >= exp_inf))
bool_filter = bool_filter & ~((a_range < 0.2) & (x_range > exp_inf))
bool_filter = bool_filter & ~((a_range < 0.5) & (x_range > 1e3))
bool_filter = bool_filter & ~((a_range < 0.56) & (x_range > 5e3))
bool_filter = bool_filter & ~((a_range < 1) & (x_range > 1e4))
bool_filter = bool_filter & ~((a_range < 1.4) & (x_range > 1e5))
bool_filter = bool_filter & ~((a_range < 1.8) & (x_range > 1e6))
bool_filter = bool_filter & ~((a_range < 2.2) & (x_range > 1e7))
bool_filter = bool_filter & ~((a_range < 2.5) & (x_range > 1e8))
bool_filter = bool_filter & ~((a_range < 2.9) & (x_range > 1e9))
bool_filter = bool_filter & ~((a_range < 3.3) & (x_range > 1e10))
bool_filter = bool_filter & ~((a_range < 3.7) & (x_range > 1e11))
bool_filter = bool_filter & ~((a_range < 4) & (x_range > 1e12))
bool_filter = bool_filter & ~((a_range < 4.4) & (x_range > 1e13))
bool_filter = bool_filter & ~((a_range < 4.7) & (x_range > 1e14))
bool_filter = bool_filter & ~((a_range < 5.1) & (x_range > 1e15))
bool_filter = bool_filter & ~((a_range < 5.4) & (x_range > 1e16))
bool_filter = bool_filter & ~((a_range < 5.8) & (x_range > 1e17))
bool_filter = bool_filter & ~((a_range < 6.2) & (x_range > 1e18))
bool_filter = bool_filter & ~((a_range < 6.2) & (x_range > 1e18))
bool_filter = bool_filter & ~((a_range < 6.5) & (x_range > 1e19))
bool_filter = bool_filter & ~((a_range < 6.9) & (x_range > 1e20))
# filter out known values that do not meet the required numerical accuracy
# see test test_wright_data_grid_failures
failing = np.array([
[0.1, 100, 709.7827128933841],
[0.5, 10, 709.7827128933841],
[0.5, 10, 1000],
[0.5, 100, 1000],
[1, 20, 100000],
[1, 100, 100000],
[1.0000000000000222, 20, 100000],
[1.0000000000000222, 100, 100000],
[1.5, 0, 500],
[1.5, 2.220446049250313e-14, 500],
[1.5, 1.e-10, 500],
[1.5, 1.e-05, 500],
[1.5, 0.1, 500],
[1.5, 20, 100000],
[1.5, 100, 100000],
]).tolist()
does_fail = np.full_like(a_range, False, dtype=bool)
for i in range(x_range.size):
if [a_range[i], b_range[i], x_range[i]] in failing:
does_fail[i] = True
# filter and flatten
a_range = a_range[bool_filter]
b_range = b_range[bool_filter]
x_range = x_range[bool_filter]
does_fail = does_fail[bool_filter]
dataset = []
print(f"Computing {x_range.size} single points.")
print("Tests will fail for the following data points:")
for i in range(x_range.size):
a = a_range[i]
b = b_range[i]
x = x_range[i]
# take care of difficult corner cases
maxterms = 1000
if a < 1e-6 and x >= exp_inf/10:
maxterms = 2000
f = mp_wright_bessel(a, b, x, maxterms=maxterms)
if does_fail[i]:
print("failing data point a, b, x, value = "
f"[{a}, {b}, {x}, {f}]")
else:
dataset.append((a, b, x, f))
dataset = np.array(dataset)
filename = os.path.join(pwd, '..', 'tests', 'data', 'local',
'wright_bessel.txt')
np.savetxt(filename, dataset)
print(f"{(time() - t0)/60:.1f} minutes elapsed")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,41 @@
import numpy as np
try:
import mpmath
except ImportError:
pass
def mpmath_wrightomega(x):
return mpmath.lambertw(mpmath.exp(x), mpmath.mpf('-0.5'))
def wrightomega_series_error(x):
series = x
desired = mpmath_wrightomega(x)
return abs(series - desired) / desired
def wrightomega_exp_error(x):
exponential_approx = mpmath.exp(x)
desired = mpmath_wrightomega(x)
return abs(exponential_approx - desired) / desired
def main():
desired_error = 2 * np.finfo(float).eps
print('Series Error')
for x in [1e5, 1e10, 1e15, 1e20]:
with mpmath.workdps(100):
error = wrightomega_series_error(x)
print(x, error, error < desired_error)
print('Exp error')
for x in [-10, -25, -50, -100, -200, -400, -700, -740]:
with mpmath.workdps(100):
error = wrightomega_exp_error(x)
print(x, error, error < desired_error)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,27 @@
"""Compute the Taylor series for zeta(x) - 1 around x = 0."""
try:
import mpmath
except ImportError:
pass
def zetac_series(N):
coeffs = []
with mpmath.workdps(100):
coeffs.append(-1.5)
for n in range(1, N):
coeff = mpmath.diff(mpmath.zeta, 0, n)/mpmath.factorial(n)
coeffs.append(coeff)
return coeffs
def main():
print(__doc__)
coeffs = zetac_series(10)
coeffs = [mpmath.nstr(x, 20, min_fixed=0, max_fixed=0)
for x in coeffs]
print("\n".join(coeffs[::-1]))
if __name__ == '__main__':
main()