asd
This commit is contained in:
116
venv/lib/python3.12/site-packages/scipy/io/__init__.py
Normal file
116
venv/lib/python3.12/site-packages/scipy/io/__init__.py
Normal file
@ -0,0 +1,116 @@
|
||||
"""
|
||||
==================================
|
||||
Input and output (:mod:`scipy.io`)
|
||||
==================================
|
||||
|
||||
.. currentmodule:: scipy.io
|
||||
|
||||
SciPy has many modules, classes, and functions available to read data
|
||||
from and write data to a variety of file formats.
|
||||
|
||||
.. seealso:: `NumPy IO routines <https://www.numpy.org/devdocs/reference/routines.io.html>`__
|
||||
|
||||
MATLAB® files
|
||||
=============
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
loadmat - Read a MATLAB style mat file (version 4 through 7.1)
|
||||
savemat - Write a MATLAB style mat file (version 4 through 7.1)
|
||||
whosmat - List contents of a MATLAB style mat file (version 4 through 7.1)
|
||||
|
||||
For low-level MATLAB reading and writing utilities, see `scipy.io.matlab`.
|
||||
|
||||
IDL® files
|
||||
==========
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
readsav - Read an IDL 'save' file
|
||||
|
||||
Matrix Market files
|
||||
===================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
mminfo - Query matrix info from Matrix Market formatted file
|
||||
mmread - Read matrix from Matrix Market formatted file
|
||||
mmwrite - Write matrix to Matrix Market formatted file
|
||||
|
||||
Unformatted Fortran files
|
||||
===============================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
FortranFile - A file object for unformatted sequential Fortran files
|
||||
FortranEOFError - Exception indicating the end of a well-formed file
|
||||
FortranFormattingError - Exception indicating an inappropriate end
|
||||
|
||||
Netcdf
|
||||
======
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
netcdf_file - A file object for NetCDF data
|
||||
netcdf_variable - A data object for the netcdf module
|
||||
|
||||
Harwell-Boeing files
|
||||
====================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
hb_read -- read H-B file
|
||||
hb_write -- write H-B file
|
||||
|
||||
Wav sound files (:mod:`scipy.io.wavfile`)
|
||||
=========================================
|
||||
|
||||
.. module:: scipy.io.wavfile
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
read
|
||||
write
|
||||
WavFileWarning
|
||||
|
||||
Arff files (:mod:`scipy.io.arff`)
|
||||
=================================
|
||||
|
||||
.. module:: scipy.io.arff
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
loadarff
|
||||
MetaData
|
||||
ArffError
|
||||
ParseArffError
|
||||
"""
|
||||
# matfile read and write
|
||||
from .matlab import loadmat, savemat, whosmat
|
||||
|
||||
# netCDF file support
|
||||
from ._netcdf import netcdf_file, netcdf_variable
|
||||
|
||||
# Fortran file support
|
||||
from ._fortran import FortranFile, FortranEOFError, FortranFormattingError
|
||||
|
||||
from ._fast_matrix_market import mminfo, mmread, mmwrite
|
||||
from ._idl import readsav
|
||||
from ._harwell_boeing import hb_read, hb_write
|
||||
|
||||
# Deprecated namespaces, to be removed in v2.0.0
|
||||
from . import arff, harwell_boeing, idl, mmio, netcdf, wavfile
|
||||
|
||||
__all__ = [s for s in dir() if not s.startswith('_')]
|
||||
|
||||
from scipy._lib._testutils import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
@ -0,0 +1,594 @@
|
||||
# Copyright (C) 2022-2023 Adam Lugowski. All rights reserved.
|
||||
# Use of this source code is governed by the BSD 2-clause license found in
|
||||
# the LICENSE.txt file.
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
"""
|
||||
Matrix Market I/O with a C++ backend.
|
||||
See http://math.nist.gov/MatrixMarket/formats.html
|
||||
for information about the Matrix Market format.
|
||||
|
||||
.. versionadded:: 1.12.0
|
||||
"""
|
||||
import io
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse
|
||||
from scipy.io import _mmio
|
||||
|
||||
__all__ = ['mminfo', 'mmread', 'mmwrite']
|
||||
|
||||
PARALLELISM = 0
|
||||
"""
|
||||
Number of threads that `mmread()` and `mmwrite()` use.
|
||||
0 means number of CPUs in the system.
|
||||
Use `threadpoolctl` to set this value.
|
||||
"""
|
||||
|
||||
ALWAYS_FIND_SYMMETRY = False
|
||||
"""
|
||||
Whether mmwrite() with symmetry='AUTO' will always search for symmetry
|
||||
inside the matrix. This is scipy.io._mmio.mmwrite()'s default behavior,
|
||||
but has a significant performance cost on large matrices.
|
||||
"""
|
||||
|
||||
_field_to_dtype = {
|
||||
"integer": "int64",
|
||||
"unsigned-integer": "uint64",
|
||||
"real": "float64",
|
||||
"complex": "complex",
|
||||
"pattern": "float64",
|
||||
}
|
||||
|
||||
|
||||
def _fmm_version():
|
||||
from . import _fmm_core
|
||||
return _fmm_core.__version__
|
||||
|
||||
|
||||
# Register with threadpoolctl, if available
|
||||
try:
|
||||
import threadpoolctl
|
||||
|
||||
class _FMMThreadPoolCtlController(threadpoolctl.LibController):
|
||||
user_api = "scipy"
|
||||
internal_api = "scipy_mmio"
|
||||
|
||||
filename_prefixes = ("_fmm_core",)
|
||||
|
||||
def get_num_threads(self):
|
||||
global PARALLELISM
|
||||
return PARALLELISM
|
||||
|
||||
def set_num_threads(self, num_threads):
|
||||
global PARALLELISM
|
||||
PARALLELISM = num_threads
|
||||
|
||||
def get_version(self):
|
||||
return _fmm_version
|
||||
|
||||
def set_additional_attributes(self):
|
||||
pass
|
||||
|
||||
threadpoolctl.register(_FMMThreadPoolCtlController)
|
||||
except (ImportError, AttributeError):
|
||||
# threadpoolctl not installed or version too old
|
||||
pass
|
||||
|
||||
|
||||
class _TextToBytesWrapper(io.BufferedReader):
|
||||
"""
|
||||
Convert a TextIOBase string stream to a byte stream.
|
||||
"""
|
||||
|
||||
def __init__(self, text_io_buffer, encoding=None, errors=None, **kwargs):
|
||||
super().__init__(text_io_buffer, **kwargs)
|
||||
self.encoding = encoding or text_io_buffer.encoding or 'utf-8'
|
||||
self.errors = errors or text_io_buffer.errors or 'strict'
|
||||
|
||||
def __del__(self):
|
||||
# do not close the wrapped stream
|
||||
self.detach()
|
||||
|
||||
def _encoding_call(self, method_name, *args, **kwargs):
|
||||
raw_method = getattr(self.raw, method_name)
|
||||
val = raw_method(*args, **kwargs)
|
||||
return val.encode(self.encoding, errors=self.errors)
|
||||
|
||||
def read(self, size=-1):
|
||||
return self._encoding_call('read', size)
|
||||
|
||||
def read1(self, size=-1):
|
||||
return self._encoding_call('read1', size)
|
||||
|
||||
def peek(self, size=-1):
|
||||
return self._encoding_call('peek', size)
|
||||
|
||||
def seek(self, offset, whence=0):
|
||||
# Random seeks are not allowed because of non-trivial conversion
|
||||
# between byte and character offsets,
|
||||
# with the possibility of a byte offset landing within a character.
|
||||
if offset == 0 and whence == 0 or \
|
||||
offset == 0 and whence == 2:
|
||||
# seek to start or end is ok
|
||||
super().seek(offset, whence)
|
||||
else:
|
||||
# Drop any other seek
|
||||
# In this application this may happen when pystreambuf seeks during sync(),
|
||||
# which can happen when closing a partially-read stream.
|
||||
# Ex. when mminfo() only reads the header then exits.
|
||||
pass
|
||||
|
||||
|
||||
def _read_body_array(cursor):
|
||||
"""
|
||||
Read MatrixMarket array body
|
||||
"""
|
||||
from . import _fmm_core
|
||||
|
||||
vals = np.zeros(cursor.header.shape, dtype=_field_to_dtype.get(cursor.header.field))
|
||||
_fmm_core.read_body_array(cursor, vals)
|
||||
return vals
|
||||
|
||||
|
||||
def _read_body_coo(cursor, generalize_symmetry=True):
|
||||
"""
|
||||
Read MatrixMarket coordinate body
|
||||
"""
|
||||
from . import _fmm_core
|
||||
|
||||
index_dtype = "int32"
|
||||
if cursor.header.nrows >= 2**31 or cursor.header.ncols >= 2**31:
|
||||
# Dimensions are too large to fit in int32
|
||||
index_dtype = "int64"
|
||||
|
||||
i = np.zeros(cursor.header.nnz, dtype=index_dtype)
|
||||
j = np.zeros(cursor.header.nnz, dtype=index_dtype)
|
||||
data = np.zeros(cursor.header.nnz, dtype=_field_to_dtype.get(cursor.header.field))
|
||||
|
||||
_fmm_core.read_body_coo(cursor, i, j, data)
|
||||
|
||||
if generalize_symmetry and cursor.header.symmetry != "general":
|
||||
off_diagonal_mask = (i != j)
|
||||
off_diagonal_rows = i[off_diagonal_mask]
|
||||
off_diagonal_cols = j[off_diagonal_mask]
|
||||
off_diagonal_data = data[off_diagonal_mask]
|
||||
|
||||
if cursor.header.symmetry == "skew-symmetric":
|
||||
off_diagonal_data *= -1
|
||||
elif cursor.header.symmetry == "hermitian":
|
||||
off_diagonal_data = off_diagonal_data.conjugate()
|
||||
|
||||
i = np.concatenate((i, off_diagonal_cols))
|
||||
j = np.concatenate((j, off_diagonal_rows))
|
||||
data = np.concatenate((data, off_diagonal_data))
|
||||
|
||||
return (data, (i, j)), cursor.header.shape
|
||||
|
||||
|
||||
def _get_read_cursor(source, parallelism=None):
|
||||
"""
|
||||
Open file for reading.
|
||||
"""
|
||||
from . import _fmm_core
|
||||
|
||||
ret_stream_to_close = None
|
||||
if parallelism is None:
|
||||
parallelism = PARALLELISM
|
||||
|
||||
try:
|
||||
source = os.fspath(source)
|
||||
# It's a file path
|
||||
is_path = True
|
||||
except TypeError:
|
||||
is_path = False
|
||||
|
||||
if is_path:
|
||||
path = str(source)
|
||||
if path.endswith('.gz'):
|
||||
import gzip
|
||||
source = gzip.GzipFile(path, 'r')
|
||||
ret_stream_to_close = source
|
||||
elif path.endswith('.bz2'):
|
||||
import bz2
|
||||
source = bz2.BZ2File(path, 'rb')
|
||||
ret_stream_to_close = source
|
||||
else:
|
||||
return _fmm_core.open_read_file(path, parallelism), ret_stream_to_close
|
||||
|
||||
# Stream object.
|
||||
if hasattr(source, "read"):
|
||||
if isinstance(source, io.TextIOBase):
|
||||
source = _TextToBytesWrapper(source)
|
||||
return _fmm_core.open_read_stream(source, parallelism), ret_stream_to_close
|
||||
else:
|
||||
raise TypeError("Unknown source type")
|
||||
|
||||
|
||||
def _get_write_cursor(target, h=None, comment=None, parallelism=None,
|
||||
symmetry="general", precision=None):
|
||||
"""
|
||||
Open file for writing.
|
||||
"""
|
||||
from . import _fmm_core
|
||||
|
||||
if parallelism is None:
|
||||
parallelism = PARALLELISM
|
||||
if comment is None:
|
||||
comment = ''
|
||||
if symmetry is None:
|
||||
symmetry = "general"
|
||||
if precision is None:
|
||||
precision = -1
|
||||
|
||||
if not h:
|
||||
h = _fmm_core.header(comment=comment, symmetry=symmetry)
|
||||
|
||||
try:
|
||||
target = os.fspath(target)
|
||||
# It's a file path
|
||||
return _fmm_core.open_write_file(str(target), h, parallelism, precision)
|
||||
except TypeError:
|
||||
pass
|
||||
|
||||
if hasattr(target, "write"):
|
||||
# Stream object.
|
||||
if isinstance(target, io.TextIOBase):
|
||||
raise TypeError("target stream must be open in binary mode.")
|
||||
return _fmm_core.open_write_stream(target, h, parallelism, precision)
|
||||
else:
|
||||
raise TypeError("Unknown source object")
|
||||
|
||||
|
||||
def _apply_field(data, field, no_pattern=False):
|
||||
"""
|
||||
Ensure that ``data.dtype`` is compatible with the specified MatrixMarket field type.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : ndarray
|
||||
Input array.
|
||||
|
||||
field : str
|
||||
Matrix Market field, such as 'real', 'complex', 'integer', 'pattern'.
|
||||
|
||||
no_pattern : bool, optional
|
||||
Whether an empty array may be returned for a 'pattern' field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
data : ndarray
|
||||
Input data if no conversion necessary, or a converted version
|
||||
"""
|
||||
|
||||
if field is None:
|
||||
return data
|
||||
if field == "pattern":
|
||||
if no_pattern:
|
||||
return data
|
||||
else:
|
||||
return np.zeros(0)
|
||||
|
||||
dtype = _field_to_dtype.get(field, None)
|
||||
if dtype is None:
|
||||
raise ValueError("Invalid field.")
|
||||
|
||||
return np.asarray(data, dtype=dtype)
|
||||
|
||||
|
||||
def _validate_symmetry(symmetry):
|
||||
"""
|
||||
Check that the symmetry parameter is one that MatrixMarket allows..
|
||||
"""
|
||||
if symmetry is None:
|
||||
return "general"
|
||||
|
||||
symmetry = str(symmetry).lower()
|
||||
symmetries = ["general", "symmetric", "skew-symmetric", "hermitian"]
|
||||
if symmetry not in symmetries:
|
||||
raise ValueError("Invalid symmetry. Must be one of: " + ", ".join(symmetries))
|
||||
|
||||
return symmetry
|
||||
|
||||
|
||||
def mmread(source):
|
||||
"""
|
||||
Reads the contents of a Matrix Market file-like 'source' into a matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : str or file-like
|
||||
Matrix Market filename (extensions .mtx, .mtz.gz)
|
||||
or open file-like object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
a : ndarray or coo_matrix
|
||||
Dense or sparse matrix depending on the matrix format in the
|
||||
Matrix Market file.
|
||||
|
||||
Notes
|
||||
-----
|
||||
.. versionchanged:: 1.12.0
|
||||
C++ implementation.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from io import StringIO
|
||||
>>> from scipy.io import mmread
|
||||
|
||||
>>> text = '''%%MatrixMarket matrix coordinate real general
|
||||
... 5 5 7
|
||||
... 2 3 1.0
|
||||
... 3 4 2.0
|
||||
... 3 5 3.0
|
||||
... 4 1 4.0
|
||||
... 4 2 5.0
|
||||
... 4 3 6.0
|
||||
... 4 4 7.0
|
||||
... '''
|
||||
|
||||
``mmread(source)`` returns the data as sparse matrix in COO format.
|
||||
|
||||
>>> m = mmread(StringIO(text))
|
||||
>>> m
|
||||
<COOrdinate sparse matrix of dtype 'float64'
|
||||
with 7 stored elements and shape (5, 5)>
|
||||
>>> m.toarray()
|
||||
array([[0., 0., 0., 0., 0.],
|
||||
[0., 0., 1., 0., 0.],
|
||||
[0., 0., 0., 2., 3.],
|
||||
[4., 5., 6., 7., 0.],
|
||||
[0., 0., 0., 0., 0.]])
|
||||
|
||||
This method is threaded.
|
||||
The default number of threads is equal to the number of CPUs in the system.
|
||||
Use `threadpoolctl <https://github.com/joblib/threadpoolctl>`_ to override:
|
||||
|
||||
>>> import threadpoolctl
|
||||
>>>
|
||||
>>> with threadpoolctl.threadpool_limits(limits=2):
|
||||
... m = mmread(StringIO(text))
|
||||
|
||||
"""
|
||||
cursor, stream_to_close = _get_read_cursor(source)
|
||||
|
||||
if cursor.header.format == "array":
|
||||
mat = _read_body_array(cursor)
|
||||
if stream_to_close:
|
||||
stream_to_close.close()
|
||||
return mat
|
||||
else:
|
||||
from scipy.sparse import coo_matrix
|
||||
triplet, shape = _read_body_coo(cursor, generalize_symmetry=True)
|
||||
if stream_to_close:
|
||||
stream_to_close.close()
|
||||
return coo_matrix(triplet, shape=shape)
|
||||
|
||||
|
||||
def mmwrite(target, a, comment=None, field=None, precision=None, symmetry="AUTO"):
|
||||
r"""
|
||||
Writes the sparse or dense array `a` to Matrix Market file-like `target`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
target : str or file-like
|
||||
Matrix Market filename (extension .mtx) or open file-like object.
|
||||
a : array like
|
||||
Sparse or dense 2-D array.
|
||||
comment : str, optional
|
||||
Comments to be prepended to the Matrix Market file.
|
||||
field : None or str, optional
|
||||
Either 'real', 'complex', 'pattern', or 'integer'.
|
||||
precision : None or int, optional
|
||||
Number of digits to display for real or complex values.
|
||||
symmetry : None or str, optional
|
||||
Either 'AUTO', 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
|
||||
If symmetry is None the symmetry type of 'a' is determined by its
|
||||
values. If symmetry is 'AUTO' the symmetry type of 'a' is either
|
||||
determined or set to 'general', at mmwrite's discretion.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
|
||||
Notes
|
||||
-----
|
||||
.. versionchanged:: 1.12.0
|
||||
C++ implementation.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from io import BytesIO
|
||||
>>> import numpy as np
|
||||
>>> from scipy.sparse import coo_matrix
|
||||
>>> from scipy.io import mmwrite
|
||||
|
||||
Write a small NumPy array to a matrix market file. The file will be
|
||||
written in the ``'array'`` format.
|
||||
|
||||
>>> a = np.array([[1.0, 0, 0, 0], [0, 2.5, 0, 6.25]])
|
||||
>>> target = BytesIO()
|
||||
>>> mmwrite(target, a)
|
||||
>>> print(target.getvalue().decode('latin1'))
|
||||
%%MatrixMarket matrix array real general
|
||||
%
|
||||
2 4
|
||||
1
|
||||
0
|
||||
0
|
||||
2.5
|
||||
0
|
||||
0
|
||||
0
|
||||
6.25
|
||||
|
||||
Add a comment to the output file, and set the precision to 3.
|
||||
|
||||
>>> target = BytesIO()
|
||||
>>> mmwrite(target, a, comment='\n Some test data.\n', precision=3)
|
||||
>>> print(target.getvalue().decode('latin1'))
|
||||
%%MatrixMarket matrix array real general
|
||||
%
|
||||
% Some test data.
|
||||
%
|
||||
2 4
|
||||
1.00e+00
|
||||
0.00e+00
|
||||
0.00e+00
|
||||
2.50e+00
|
||||
0.00e+00
|
||||
0.00e+00
|
||||
0.00e+00
|
||||
6.25e+00
|
||||
|
||||
Convert to a sparse matrix before calling ``mmwrite``. This will
|
||||
result in the output format being ``'coordinate'`` rather than
|
||||
``'array'``.
|
||||
|
||||
>>> target = BytesIO()
|
||||
>>> mmwrite(target, coo_matrix(a), precision=3)
|
||||
>>> print(target.getvalue().decode('latin1'))
|
||||
%%MatrixMarket matrix coordinate real general
|
||||
%
|
||||
2 4 3
|
||||
1 1 1.00e+00
|
||||
2 2 2.50e+00
|
||||
2 4 6.25e+00
|
||||
|
||||
Write a complex Hermitian array to a matrix market file. Note that
|
||||
only six values are actually written to the file; the other values
|
||||
are implied by the symmetry.
|
||||
|
||||
>>> z = np.array([[3, 1+2j, 4-3j], [1-2j, 1, -5j], [4+3j, 5j, 2.5]])
|
||||
>>> z
|
||||
array([[ 3. +0.j, 1. +2.j, 4. -3.j],
|
||||
[ 1. -2.j, 1. +0.j, -0. -5.j],
|
||||
[ 4. +3.j, 0. +5.j, 2.5+0.j]])
|
||||
|
||||
>>> target = BytesIO()
|
||||
>>> mmwrite(target, z, precision=2)
|
||||
>>> print(target.getvalue().decode('latin1'))
|
||||
%%MatrixMarket matrix array complex hermitian
|
||||
%
|
||||
3 3
|
||||
3.0e+00 0.0e+00
|
||||
1.0e+00 -2.0e+00
|
||||
4.0e+00 3.0e+00
|
||||
1.0e+00 0.0e+00
|
||||
0.0e+00 5.0e+00
|
||||
2.5e+00 0.0e+00
|
||||
|
||||
This method is threaded.
|
||||
The default number of threads is equal to the number of CPUs in the system.
|
||||
Use `threadpoolctl <https://github.com/joblib/threadpoolctl>`_ to override:
|
||||
|
||||
>>> import threadpoolctl
|
||||
>>>
|
||||
>>> target = BytesIO()
|
||||
>>> with threadpoolctl.threadpool_limits(limits=2):
|
||||
... mmwrite(target, a)
|
||||
|
||||
"""
|
||||
from . import _fmm_core
|
||||
|
||||
if isinstance(a, list) or isinstance(a, tuple) or hasattr(a, "__array__"):
|
||||
a = np.asarray(a)
|
||||
|
||||
if symmetry == "AUTO":
|
||||
if ALWAYS_FIND_SYMMETRY or (hasattr(a, "shape") and max(a.shape) < 100):
|
||||
symmetry = None
|
||||
else:
|
||||
symmetry = "general"
|
||||
|
||||
if symmetry is None:
|
||||
symmetry = _mmio.MMFile()._get_symmetry(a)
|
||||
|
||||
symmetry = _validate_symmetry(symmetry)
|
||||
cursor = _get_write_cursor(target, comment=comment,
|
||||
precision=precision, symmetry=symmetry)
|
||||
|
||||
if isinstance(a, np.ndarray):
|
||||
# Write dense numpy arrays
|
||||
a = _apply_field(a, field, no_pattern=True)
|
||||
_fmm_core.write_body_array(cursor, a)
|
||||
|
||||
elif scipy.sparse.issparse(a):
|
||||
# Write sparse scipy matrices
|
||||
a = a.tocoo()
|
||||
|
||||
if symmetry is not None and symmetry != "general":
|
||||
# A symmetric matrix only specifies the elements below the diagonal.
|
||||
# Ensure that the matrix satisfies this requirement.
|
||||
from scipy.sparse import coo_array
|
||||
lower_triangle_mask = a.row >= a.col
|
||||
a = coo_array((a.data[lower_triangle_mask],
|
||||
(a.row[lower_triangle_mask],
|
||||
a.col[lower_triangle_mask])), shape=a.shape)
|
||||
|
||||
data = _apply_field(a.data, field)
|
||||
_fmm_core.write_body_coo(cursor, a.shape, a.row, a.col, data)
|
||||
|
||||
else:
|
||||
raise ValueError("unknown matrix type: %s" % type(a))
|
||||
|
||||
|
||||
def mminfo(source):
|
||||
"""
|
||||
Return size and storage parameters from Matrix Market file-like 'source'.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : str or file-like
|
||||
Matrix Market filename (extension .mtx) or open file-like object
|
||||
|
||||
Returns
|
||||
-------
|
||||
rows : int
|
||||
Number of matrix rows.
|
||||
cols : int
|
||||
Number of matrix columns.
|
||||
entries : int
|
||||
Number of non-zero entries of a sparse matrix
|
||||
or rows*cols for a dense matrix.
|
||||
format : str
|
||||
Either 'coordinate' or 'array'.
|
||||
field : str
|
||||
Either 'real', 'complex', 'pattern', or 'integer'.
|
||||
symmetry : str
|
||||
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
|
||||
|
||||
Notes
|
||||
-----
|
||||
.. versionchanged:: 1.12.0
|
||||
C++ implementation.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from io import StringIO
|
||||
>>> from scipy.io import mminfo
|
||||
|
||||
>>> text = '''%%MatrixMarket matrix coordinate real general
|
||||
... 5 5 7
|
||||
... 2 3 1.0
|
||||
... 3 4 2.0
|
||||
... 3 5 3.0
|
||||
... 4 1 4.0
|
||||
... 4 2 5.0
|
||||
... 4 3 6.0
|
||||
... 4 4 7.0
|
||||
... '''
|
||||
|
||||
|
||||
``mminfo(source)`` returns the number of rows, number of columns,
|
||||
format, field type and symmetry attribute of the source file.
|
||||
|
||||
>>> mminfo(StringIO(text))
|
||||
(5, 5, 7, 'coordinate', 'real', 'general')
|
||||
"""
|
||||
cursor, stream_to_close = _get_read_cursor(source, 1)
|
||||
h = cursor.header
|
||||
cursor.close()
|
||||
if stream_to_close:
|
||||
stream_to_close.close()
|
||||
return h.nrows, h.ncols, h.nnz, h.format, h.field, h.symmetry
|
Binary file not shown.
354
venv/lib/python3.12/site-packages/scipy/io/_fortran.py
Normal file
354
venv/lib/python3.12/site-packages/scipy/io/_fortran.py
Normal file
@ -0,0 +1,354 @@
|
||||
"""
|
||||
Module to read / write Fortran unformatted sequential files.
|
||||
|
||||
This is in the spirit of code written by Neil Martinsen-Burrell and Joe Zuntz.
|
||||
|
||||
"""
|
||||
import warnings
|
||||
import numpy as np
|
||||
|
||||
__all__ = ['FortranFile', 'FortranEOFError', 'FortranFormattingError']
|
||||
|
||||
|
||||
class FortranEOFError(TypeError, OSError):
|
||||
"""Indicates that the file ended properly.
|
||||
|
||||
This error descends from TypeError because the code used to raise
|
||||
TypeError (and this was the only way to know that the file had
|
||||
ended) so users might have ``except TypeError:``.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class FortranFormattingError(TypeError, OSError):
|
||||
"""Indicates that the file ended mid-record.
|
||||
|
||||
Descends from TypeError for backward compatibility.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class FortranFile:
|
||||
"""
|
||||
A file object for unformatted sequential files from Fortran code.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filename : file or str
|
||||
Open file object or filename.
|
||||
mode : {'r', 'w'}, optional
|
||||
Read-write mode, default is 'r'.
|
||||
header_dtype : dtype, optional
|
||||
Data type of the header. Size and endianness must match the input/output file.
|
||||
|
||||
Notes
|
||||
-----
|
||||
These files are broken up into records of unspecified types. The size of
|
||||
each record is given at the start (although the size of this header is not
|
||||
standard) and the data is written onto disk without any formatting. Fortran
|
||||
compilers supporting the BACKSPACE statement will write a second copy of
|
||||
the size to facilitate backwards seeking.
|
||||
|
||||
This class only supports files written with both sizes for the record.
|
||||
It also does not support the subrecords used in Intel and gfortran compilers
|
||||
for records which are greater than 2GB with a 4-byte header.
|
||||
|
||||
An example of an unformatted sequential file in Fortran would be written as::
|
||||
|
||||
OPEN(1, FILE=myfilename, FORM='unformatted')
|
||||
|
||||
WRITE(1) myvariable
|
||||
|
||||
Since this is a non-standard file format, whose contents depend on the
|
||||
compiler and the endianness of the machine, caution is advised. Files from
|
||||
gfortran 4.8.0 and gfortran 4.1.2 on x86_64 are known to work.
|
||||
|
||||
Consider using Fortran direct-access files or files from the newer Stream
|
||||
I/O, which can be easily read by `numpy.fromfile`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
To create an unformatted sequential Fortran file:
|
||||
|
||||
>>> from scipy.io import FortranFile
|
||||
>>> import numpy as np
|
||||
>>> f = FortranFile('test.unf', 'w')
|
||||
>>> f.write_record(np.array([1,2,3,4,5], dtype=np.int32))
|
||||
>>> f.write_record(np.linspace(0,1,20).reshape((5,4)).T)
|
||||
>>> f.close()
|
||||
|
||||
To read this file:
|
||||
|
||||
>>> f = FortranFile('test.unf', 'r')
|
||||
>>> print(f.read_ints(np.int32))
|
||||
[1 2 3 4 5]
|
||||
>>> print(f.read_reals(float).reshape((5,4), order="F"))
|
||||
[[0. 0.05263158 0.10526316 0.15789474]
|
||||
[0.21052632 0.26315789 0.31578947 0.36842105]
|
||||
[0.42105263 0.47368421 0.52631579 0.57894737]
|
||||
[0.63157895 0.68421053 0.73684211 0.78947368]
|
||||
[0.84210526 0.89473684 0.94736842 1. ]]
|
||||
>>> f.close()
|
||||
|
||||
Or, in Fortran::
|
||||
|
||||
integer :: a(5), i
|
||||
double precision :: b(5,4)
|
||||
open(1, file='test.unf', form='unformatted')
|
||||
read(1) a
|
||||
read(1) b
|
||||
close(1)
|
||||
write(*,*) a
|
||||
do i = 1, 5
|
||||
write(*,*) b(i,:)
|
||||
end do
|
||||
|
||||
"""
|
||||
def __init__(self, filename, mode='r', header_dtype=np.uint32):
|
||||
if header_dtype is None:
|
||||
raise ValueError('Must specify dtype')
|
||||
|
||||
header_dtype = np.dtype(header_dtype)
|
||||
if header_dtype.kind != 'u':
|
||||
warnings.warn("Given a dtype which is not unsigned.", stacklevel=2)
|
||||
|
||||
if mode not in 'rw' or len(mode) != 1:
|
||||
raise ValueError('mode must be either r or w')
|
||||
|
||||
if hasattr(filename, 'seek'):
|
||||
self._fp = filename
|
||||
else:
|
||||
self._fp = open(filename, '%sb' % mode)
|
||||
|
||||
self._header_dtype = header_dtype
|
||||
|
||||
def _read_size(self, eof_ok=False):
|
||||
n = self._header_dtype.itemsize
|
||||
b = self._fp.read(n)
|
||||
if (not b) and eof_ok:
|
||||
raise FortranEOFError("End of file occurred at end of record")
|
||||
elif len(b) < n:
|
||||
raise FortranFormattingError(
|
||||
"End of file in the middle of the record size")
|
||||
return int(np.frombuffer(b, dtype=self._header_dtype, count=1)[0])
|
||||
|
||||
def write_record(self, *items):
|
||||
"""
|
||||
Write a record (including sizes) to the file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
*items : array_like
|
||||
The data arrays to write.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Writes data items to a file::
|
||||
|
||||
write_record(a.T, b.T, c.T, ...)
|
||||
|
||||
write(1) a, b, c, ...
|
||||
|
||||
Note that data in multidimensional arrays is written in
|
||||
row-major order --- to make them read correctly by Fortran
|
||||
programs, you need to transpose the arrays yourself when
|
||||
writing them.
|
||||
|
||||
"""
|
||||
items = tuple(np.asarray(item) for item in items)
|
||||
total_size = sum(item.nbytes for item in items)
|
||||
|
||||
nb = np.array([total_size], dtype=self._header_dtype)
|
||||
|
||||
nb.tofile(self._fp)
|
||||
for item in items:
|
||||
item.tofile(self._fp)
|
||||
nb.tofile(self._fp)
|
||||
|
||||
def read_record(self, *dtypes, **kwargs):
|
||||
"""
|
||||
Reads a record of a given type from the file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
*dtypes : dtypes, optional
|
||||
Data type(s) specifying the size and endianness of the data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
data : ndarray
|
||||
A 1-D array object.
|
||||
|
||||
Raises
|
||||
------
|
||||
FortranEOFError
|
||||
To signal that no further records are available
|
||||
FortranFormattingError
|
||||
To signal that the end of the file was encountered
|
||||
part-way through a record
|
||||
|
||||
Notes
|
||||
-----
|
||||
If the record contains a multidimensional array, you can specify
|
||||
the size in the dtype. For example::
|
||||
|
||||
INTEGER var(5,4)
|
||||
|
||||
can be read with::
|
||||
|
||||
read_record('(4,5)i4').T
|
||||
|
||||
Note that this function does **not** assume the file data is in Fortran
|
||||
column major order, so you need to (i) swap the order of dimensions
|
||||
when reading and (ii) transpose the resulting array.
|
||||
|
||||
Alternatively, you can read the data as a 1-D array and handle the
|
||||
ordering yourself. For example::
|
||||
|
||||
read_record('i4').reshape(5, 4, order='F')
|
||||
|
||||
For records that contain several variables or mixed types (as opposed
|
||||
to single scalar or array types), give them as separate arguments::
|
||||
|
||||
double precision :: a
|
||||
integer :: b
|
||||
write(1) a, b
|
||||
|
||||
record = f.read_record('<f4', '<i4')
|
||||
a = record[0] # first number
|
||||
b = record[1] # second number
|
||||
|
||||
and if any of the variables are arrays, the shape can be specified as
|
||||
the third item in the relevant dtype::
|
||||
|
||||
double precision :: a
|
||||
integer :: b(3,4)
|
||||
write(1) a, b
|
||||
|
||||
record = f.read_record('<f4', np.dtype(('<i4', (4, 3))))
|
||||
a = record[0]
|
||||
b = record[1].T
|
||||
|
||||
NumPy also supports a short syntax for this kind of type::
|
||||
|
||||
record = f.read_record('<f4', '(3,3)<i4')
|
||||
|
||||
See Also
|
||||
--------
|
||||
read_reals
|
||||
read_ints
|
||||
|
||||
"""
|
||||
dtype = kwargs.pop('dtype', None)
|
||||
if kwargs:
|
||||
raise ValueError(f"Unknown keyword arguments {tuple(kwargs.keys())}")
|
||||
|
||||
if dtype is not None:
|
||||
dtypes = dtypes + (dtype,)
|
||||
elif not dtypes:
|
||||
raise ValueError('Must specify at least one dtype')
|
||||
|
||||
first_size = self._read_size(eof_ok=True)
|
||||
|
||||
dtypes = tuple(np.dtype(dtype) for dtype in dtypes)
|
||||
block_size = sum(dtype.itemsize for dtype in dtypes)
|
||||
|
||||
num_blocks, remainder = divmod(first_size, block_size)
|
||||
if remainder != 0:
|
||||
raise ValueError(f'Size obtained ({first_size}) is not a multiple of the '
|
||||
f'dtypes given ({block_size}).')
|
||||
|
||||
if len(dtypes) != 1 and first_size != block_size:
|
||||
# Fortran does not write mixed type array items in interleaved order,
|
||||
# and it's not possible to guess the sizes of the arrays that were written.
|
||||
# The user must specify the exact sizes of each of the arrays.
|
||||
raise ValueError(f'Size obtained ({first_size}) does not match with the '
|
||||
f'expected size ({block_size}) of multi-item record')
|
||||
|
||||
data = []
|
||||
for dtype in dtypes:
|
||||
r = np.fromfile(self._fp, dtype=dtype, count=num_blocks)
|
||||
if len(r) != num_blocks:
|
||||
raise FortranFormattingError(
|
||||
"End of file in the middle of a record")
|
||||
if dtype.shape != ():
|
||||
# Squeeze outmost block dimension for array items
|
||||
if num_blocks == 1:
|
||||
assert r.shape == (1,) + dtype.shape
|
||||
r = r[0]
|
||||
|
||||
data.append(r)
|
||||
|
||||
second_size = self._read_size()
|
||||
if first_size != second_size:
|
||||
raise ValueError('Sizes do not agree in the header and footer for '
|
||||
'this record - check header dtype')
|
||||
|
||||
# Unpack result
|
||||
if len(dtypes) == 1:
|
||||
return data[0]
|
||||
else:
|
||||
return tuple(data)
|
||||
|
||||
def read_ints(self, dtype='i4'):
|
||||
"""
|
||||
Reads a record of a given type from the file, defaulting to an integer
|
||||
type (``INTEGER*4`` in Fortran).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dtype : dtype, optional
|
||||
Data type specifying the size and endianness of the data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
data : ndarray
|
||||
A 1-D array object.
|
||||
|
||||
See Also
|
||||
--------
|
||||
read_reals
|
||||
read_record
|
||||
|
||||
"""
|
||||
return self.read_record(dtype)
|
||||
|
||||
def read_reals(self, dtype='f8'):
|
||||
"""
|
||||
Reads a record of a given type from the file, defaulting to a floating
|
||||
point number (``real*8`` in Fortran).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dtype : dtype, optional
|
||||
Data type specifying the size and endianness of the data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
data : ndarray
|
||||
A 1-D array object.
|
||||
|
||||
See Also
|
||||
--------
|
||||
read_ints
|
||||
read_record
|
||||
|
||||
"""
|
||||
return self.read_record(dtype)
|
||||
|
||||
def close(self):
|
||||
"""
|
||||
Closes the file. It is unsupported to call any other methods off this
|
||||
object after closing it. Note that this class supports the 'with'
|
||||
statement in modern versions of Python, to call this automatically
|
||||
|
||||
"""
|
||||
self._fp.close()
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, tb):
|
||||
self.close()
|
@ -0,0 +1,7 @@
|
||||
from .hb import hb_read, hb_write
|
||||
|
||||
__all__ = ["hb_read", "hb_write"]
|
||||
|
||||
from scipy._lib._testutils import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
@ -0,0 +1,309 @@
|
||||
"""
|
||||
Preliminary module to handle Fortran formats for IO. Does not use this outside
|
||||
scipy.sparse io for now, until the API is deemed reasonable.
|
||||
|
||||
The *Format classes handle conversion between Fortran and Python format, and
|
||||
FortranFormatParser can create *Format instances from raw Fortran format
|
||||
strings (e.g. '(3I4)', '(10I3)', etc...)
|
||||
"""
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
__all__ = ["BadFortranFormat", "FortranFormatParser", "IntFormat", "ExpFormat"]
|
||||
|
||||
|
||||
TOKENS = {
|
||||
"LPAR": r"\(",
|
||||
"RPAR": r"\)",
|
||||
"INT_ID": r"I",
|
||||
"EXP_ID": r"E",
|
||||
"INT": r"\d+",
|
||||
"DOT": r"\.",
|
||||
}
|
||||
|
||||
|
||||
class BadFortranFormat(SyntaxError):
|
||||
pass
|
||||
|
||||
|
||||
def number_digits(n):
|
||||
return int(np.floor(np.log10(np.abs(n))) + 1)
|
||||
|
||||
|
||||
class IntFormat:
|
||||
@classmethod
|
||||
def from_number(cls, n, min=None):
|
||||
"""Given an integer, returns a "reasonable" IntFormat instance to represent
|
||||
any number between 0 and n if n > 0, -n and n if n < 0
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
max number one wants to be able to represent
|
||||
min : int
|
||||
minimum number of characters to use for the format
|
||||
|
||||
Returns
|
||||
-------
|
||||
res : IntFormat
|
||||
IntFormat instance with reasonable (see Notes) computed width
|
||||
|
||||
Notes
|
||||
-----
|
||||
Reasonable should be understood as the minimal string length necessary
|
||||
without losing precision. For example, IntFormat.from_number(1) will
|
||||
return an IntFormat instance of width 2, so that any 0 and 1 may be
|
||||
represented as 1-character strings without loss of information.
|
||||
"""
|
||||
width = number_digits(n) + 1
|
||||
if n < 0:
|
||||
width += 1
|
||||
repeat = 80 // width
|
||||
return cls(width, min, repeat=repeat)
|
||||
|
||||
def __init__(self, width, min=None, repeat=None):
|
||||
self.width = width
|
||||
self.repeat = repeat
|
||||
self.min = min
|
||||
|
||||
def __repr__(self):
|
||||
r = "IntFormat("
|
||||
if self.repeat:
|
||||
r += "%d" % self.repeat
|
||||
r += "I%d" % self.width
|
||||
if self.min:
|
||||
r += ".%d" % self.min
|
||||
return r + ")"
|
||||
|
||||
@property
|
||||
def fortran_format(self):
|
||||
r = "("
|
||||
if self.repeat:
|
||||
r += "%d" % self.repeat
|
||||
r += "I%d" % self.width
|
||||
if self.min:
|
||||
r += ".%d" % self.min
|
||||
return r + ")"
|
||||
|
||||
@property
|
||||
def python_format(self):
|
||||
return "%" + str(self.width) + "d"
|
||||
|
||||
|
||||
class ExpFormat:
|
||||
@classmethod
|
||||
def from_number(cls, n, min=None):
|
||||
"""Given a float number, returns a "reasonable" ExpFormat instance to
|
||||
represent any number between -n and n.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : float
|
||||
max number one wants to be able to represent
|
||||
min : int
|
||||
minimum number of characters to use for the format
|
||||
|
||||
Returns
|
||||
-------
|
||||
res : ExpFormat
|
||||
ExpFormat instance with reasonable (see Notes) computed width
|
||||
|
||||
Notes
|
||||
-----
|
||||
Reasonable should be understood as the minimal string length necessary
|
||||
to avoid losing precision.
|
||||
"""
|
||||
# len of one number in exp format: sign + 1|0 + "." +
|
||||
# number of digit for fractional part + 'E' + sign of exponent +
|
||||
# len of exponent
|
||||
finfo = np.finfo(n.dtype)
|
||||
# Number of digits for fractional part
|
||||
n_prec = finfo.precision + 1
|
||||
# Number of digits for exponential part
|
||||
n_exp = number_digits(np.max(np.abs([finfo.maxexp, finfo.minexp])))
|
||||
width = 1 + 1 + n_prec + 1 + n_exp + 1
|
||||
if n < 0:
|
||||
width += 1
|
||||
repeat = int(np.floor(80 / width))
|
||||
return cls(width, n_prec, min, repeat=repeat)
|
||||
|
||||
def __init__(self, width, significand, min=None, repeat=None):
|
||||
"""\
|
||||
Parameters
|
||||
----------
|
||||
width : int
|
||||
number of characters taken by the string (includes space).
|
||||
"""
|
||||
self.width = width
|
||||
self.significand = significand
|
||||
self.repeat = repeat
|
||||
self.min = min
|
||||
|
||||
def __repr__(self):
|
||||
r = "ExpFormat("
|
||||
if self.repeat:
|
||||
r += "%d" % self.repeat
|
||||
r += "E%d.%d" % (self.width, self.significand)
|
||||
if self.min:
|
||||
r += "E%d" % self.min
|
||||
return r + ")"
|
||||
|
||||
@property
|
||||
def fortran_format(self):
|
||||
r = "("
|
||||
if self.repeat:
|
||||
r += "%d" % self.repeat
|
||||
r += "E%d.%d" % (self.width, self.significand)
|
||||
if self.min:
|
||||
r += "E%d" % self.min
|
||||
return r + ")"
|
||||
|
||||
@property
|
||||
def python_format(self):
|
||||
return "%" + str(self.width-1) + "." + str(self.significand) + "E"
|
||||
|
||||
|
||||
class Token:
|
||||
def __init__(self, type, value, pos):
|
||||
self.type = type
|
||||
self.value = value
|
||||
self.pos = pos
|
||||
|
||||
def __str__(self):
|
||||
return f"""Token('{self.type}', "{self.value}")"""
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
def __init__(self):
|
||||
self.tokens = list(TOKENS.keys())
|
||||
self.res = [re.compile(TOKENS[i]) for i in self.tokens]
|
||||
|
||||
def input(self, s):
|
||||
self.data = s
|
||||
self.curpos = 0
|
||||
self.len = len(s)
|
||||
|
||||
def next_token(self):
|
||||
curpos = self.curpos
|
||||
|
||||
while curpos < self.len:
|
||||
for i, r in enumerate(self.res):
|
||||
m = r.match(self.data, curpos)
|
||||
if m is None:
|
||||
continue
|
||||
else:
|
||||
self.curpos = m.end()
|
||||
return Token(self.tokens[i], m.group(), self.curpos)
|
||||
raise SyntaxError("Unknown character at position %d (%s)"
|
||||
% (self.curpos, self.data[curpos]))
|
||||
|
||||
|
||||
# Grammar for fortran format:
|
||||
# format : LPAR format_string RPAR
|
||||
# format_string : repeated | simple
|
||||
# repeated : repeat simple
|
||||
# simple : int_fmt | exp_fmt
|
||||
# int_fmt : INT_ID width
|
||||
# exp_fmt : simple_exp_fmt
|
||||
# simple_exp_fmt : EXP_ID width DOT significand
|
||||
# extended_exp_fmt : EXP_ID width DOT significand EXP_ID ndigits
|
||||
# repeat : INT
|
||||
# width : INT
|
||||
# significand : INT
|
||||
# ndigits : INT
|
||||
|
||||
# Naive fortran formatter - parser is hand-made
|
||||
class FortranFormatParser:
|
||||
"""Parser for Fortran format strings. The parse method returns a *Format
|
||||
instance.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Only ExpFormat (exponential format for floating values) and IntFormat
|
||||
(integer format) for now.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.tokenizer = Tokenizer()
|
||||
|
||||
def parse(self, s):
|
||||
self.tokenizer.input(s)
|
||||
|
||||
tokens = []
|
||||
|
||||
try:
|
||||
while True:
|
||||
t = self.tokenizer.next_token()
|
||||
if t is None:
|
||||
break
|
||||
else:
|
||||
tokens.append(t)
|
||||
return self._parse_format(tokens)
|
||||
except SyntaxError as e:
|
||||
raise BadFortranFormat(str(e)) from e
|
||||
|
||||
def _get_min(self, tokens):
|
||||
next = tokens.pop(0)
|
||||
if not next.type == "DOT":
|
||||
raise SyntaxError()
|
||||
next = tokens.pop(0)
|
||||
return next.value
|
||||
|
||||
def _expect(self, token, tp):
|
||||
if not token.type == tp:
|
||||
raise SyntaxError()
|
||||
|
||||
def _parse_format(self, tokens):
|
||||
if not tokens[0].type == "LPAR":
|
||||
raise SyntaxError("Expected left parenthesis at position "
|
||||
"%d (got '%s')" % (0, tokens[0].value))
|
||||
elif not tokens[-1].type == "RPAR":
|
||||
raise SyntaxError("Expected right parenthesis at position "
|
||||
"%d (got '%s')" % (len(tokens), tokens[-1].value))
|
||||
|
||||
tokens = tokens[1:-1]
|
||||
types = [t.type for t in tokens]
|
||||
if types[0] == "INT":
|
||||
repeat = int(tokens.pop(0).value)
|
||||
else:
|
||||
repeat = None
|
||||
|
||||
next = tokens.pop(0)
|
||||
if next.type == "INT_ID":
|
||||
next = self._next(tokens, "INT")
|
||||
width = int(next.value)
|
||||
if tokens:
|
||||
min = int(self._get_min(tokens))
|
||||
else:
|
||||
min = None
|
||||
return IntFormat(width, min, repeat)
|
||||
elif next.type == "EXP_ID":
|
||||
next = self._next(tokens, "INT")
|
||||
width = int(next.value)
|
||||
|
||||
next = self._next(tokens, "DOT")
|
||||
|
||||
next = self._next(tokens, "INT")
|
||||
significand = int(next.value)
|
||||
|
||||
if tokens:
|
||||
next = self._next(tokens, "EXP_ID")
|
||||
|
||||
next = self._next(tokens, "INT")
|
||||
min = int(next.value)
|
||||
else:
|
||||
min = None
|
||||
return ExpFormat(width, significand, min, repeat)
|
||||
else:
|
||||
raise SyntaxError("Invalid formatter type %s" % next.value)
|
||||
|
||||
def _next(self, tokens, tp):
|
||||
if not len(tokens) > 0:
|
||||
raise SyntaxError()
|
||||
next = tokens.pop(0)
|
||||
self._expect(next, tp)
|
||||
return next
|
574
venv/lib/python3.12/site-packages/scipy/io/_harwell_boeing/hb.py
Normal file
574
venv/lib/python3.12/site-packages/scipy/io/_harwell_boeing/hb.py
Normal file
@ -0,0 +1,574 @@
|
||||
"""
|
||||
Implementation of Harwell-Boeing read/write.
|
||||
|
||||
At the moment not the full Harwell-Boeing format is supported. Supported
|
||||
features are:
|
||||
|
||||
- assembled, non-symmetric, real matrices
|
||||
- integer for pointer/indices
|
||||
- exponential format for float values, and int format
|
||||
|
||||
"""
|
||||
# TODO:
|
||||
# - Add more support (symmetric/complex matrices, non-assembled matrices ?)
|
||||
|
||||
# XXX: reading is reasonably efficient (>= 85 % is in numpy.fromstring), but
|
||||
# takes a lot of memory. Being faster would require compiled code.
|
||||
# write is not efficient. Although not a terribly exciting task,
|
||||
# having reusable facilities to efficiently read/write fortran-formatted files
|
||||
# would be useful outside this module.
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from scipy.sparse import csc_matrix
|
||||
from ._fortran_format_parser import FortranFormatParser, IntFormat, ExpFormat
|
||||
|
||||
__all__ = ["hb_read", "hb_write"]
|
||||
|
||||
|
||||
class MalformedHeader(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class LineOverflow(Warning):
|
||||
pass
|
||||
|
||||
|
||||
def _nbytes_full(fmt, nlines):
|
||||
"""Return the number of bytes to read to get every full lines for the
|
||||
given parsed fortran format."""
|
||||
return (fmt.repeat * fmt.width + 1) * (nlines - 1)
|
||||
|
||||
|
||||
class HBInfo:
|
||||
@classmethod
|
||||
def from_data(cls, m, title="Default title", key="0", mxtype=None, fmt=None):
|
||||
"""Create a HBInfo instance from an existing sparse matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
m : sparse matrix
|
||||
the HBInfo instance will derive its parameters from m
|
||||
title : str
|
||||
Title to put in the HB header
|
||||
key : str
|
||||
Key
|
||||
mxtype : HBMatrixType
|
||||
type of the input matrix
|
||||
fmt : dict
|
||||
not implemented
|
||||
|
||||
Returns
|
||||
-------
|
||||
hb_info : HBInfo instance
|
||||
"""
|
||||
m = m.tocsc(copy=False)
|
||||
|
||||
pointer = m.indptr
|
||||
indices = m.indices
|
||||
values = m.data
|
||||
|
||||
nrows, ncols = m.shape
|
||||
nnon_zeros = m.nnz
|
||||
|
||||
if fmt is None:
|
||||
# +1 because HB use one-based indexing (Fortran), and we will write
|
||||
# the indices /pointer as such
|
||||
pointer_fmt = IntFormat.from_number(np.max(pointer+1))
|
||||
indices_fmt = IntFormat.from_number(np.max(indices+1))
|
||||
|
||||
if values.dtype.kind in np.typecodes["AllFloat"]:
|
||||
values_fmt = ExpFormat.from_number(-np.max(np.abs(values)))
|
||||
elif values.dtype.kind in np.typecodes["AllInteger"]:
|
||||
values_fmt = IntFormat.from_number(-np.max(np.abs(values)))
|
||||
else:
|
||||
message = f"type {values.dtype.kind} not implemented yet"
|
||||
raise NotImplementedError(message)
|
||||
else:
|
||||
raise NotImplementedError("fmt argument not supported yet.")
|
||||
|
||||
if mxtype is None:
|
||||
if not np.isrealobj(values):
|
||||
raise ValueError("Complex values not supported yet")
|
||||
if values.dtype.kind in np.typecodes["AllInteger"]:
|
||||
tp = "integer"
|
||||
elif values.dtype.kind in np.typecodes["AllFloat"]:
|
||||
tp = "real"
|
||||
else:
|
||||
raise NotImplementedError("type %s for values not implemented"
|
||||
% values.dtype)
|
||||
mxtype = HBMatrixType(tp, "unsymmetric", "assembled")
|
||||
else:
|
||||
raise ValueError("mxtype argument not handled yet.")
|
||||
|
||||
def _nlines(fmt, size):
|
||||
nlines = size // fmt.repeat
|
||||
if nlines * fmt.repeat != size:
|
||||
nlines += 1
|
||||
return nlines
|
||||
|
||||
pointer_nlines = _nlines(pointer_fmt, pointer.size)
|
||||
indices_nlines = _nlines(indices_fmt, indices.size)
|
||||
values_nlines = _nlines(values_fmt, values.size)
|
||||
|
||||
total_nlines = pointer_nlines + indices_nlines + values_nlines
|
||||
|
||||
return cls(title, key,
|
||||
total_nlines, pointer_nlines, indices_nlines, values_nlines,
|
||||
mxtype, nrows, ncols, nnon_zeros,
|
||||
pointer_fmt.fortran_format, indices_fmt.fortran_format,
|
||||
values_fmt.fortran_format)
|
||||
|
||||
@classmethod
|
||||
def from_file(cls, fid):
|
||||
"""Create a HBInfo instance from a file object containing a matrix in the
|
||||
HB format.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fid : file-like matrix
|
||||
File or file-like object containing a matrix in the HB format.
|
||||
|
||||
Returns
|
||||
-------
|
||||
hb_info : HBInfo instance
|
||||
"""
|
||||
# First line
|
||||
line = fid.readline().strip("\n")
|
||||
if not len(line) > 72:
|
||||
raise ValueError("Expected at least 72 characters for first line, "
|
||||
"got: \n%s" % line)
|
||||
title = line[:72]
|
||||
key = line[72:]
|
||||
|
||||
# Second line
|
||||
line = fid.readline().strip("\n")
|
||||
if not len(line.rstrip()) >= 56:
|
||||
raise ValueError("Expected at least 56 characters for second line, "
|
||||
"got: \n%s" % line)
|
||||
total_nlines = _expect_int(line[:14])
|
||||
pointer_nlines = _expect_int(line[14:28])
|
||||
indices_nlines = _expect_int(line[28:42])
|
||||
values_nlines = _expect_int(line[42:56])
|
||||
|
||||
rhs_nlines = line[56:72].strip()
|
||||
if rhs_nlines == '':
|
||||
rhs_nlines = 0
|
||||
else:
|
||||
rhs_nlines = _expect_int(rhs_nlines)
|
||||
if not rhs_nlines == 0:
|
||||
raise ValueError("Only files without right hand side supported for "
|
||||
"now.")
|
||||
|
||||
# Third line
|
||||
line = fid.readline().strip("\n")
|
||||
if not len(line) >= 70:
|
||||
raise ValueError("Expected at least 72 character for third line, got:\n"
|
||||
"%s" % line)
|
||||
|
||||
mxtype_s = line[:3].upper()
|
||||
if not len(mxtype_s) == 3:
|
||||
raise ValueError("mxtype expected to be 3 characters long")
|
||||
|
||||
mxtype = HBMatrixType.from_fortran(mxtype_s)
|
||||
if mxtype.value_type not in ["real", "integer"]:
|
||||
raise ValueError("Only real or integer matrices supported for "
|
||||
"now (detected %s)" % mxtype)
|
||||
if not mxtype.structure == "unsymmetric":
|
||||
raise ValueError("Only unsymmetric matrices supported for "
|
||||
"now (detected %s)" % mxtype)
|
||||
if not mxtype.storage == "assembled":
|
||||
raise ValueError("Only assembled matrices supported for now")
|
||||
|
||||
if not line[3:14] == " " * 11:
|
||||
raise ValueError("Malformed data for third line: %s" % line)
|
||||
|
||||
nrows = _expect_int(line[14:28])
|
||||
ncols = _expect_int(line[28:42])
|
||||
nnon_zeros = _expect_int(line[42:56])
|
||||
nelementals = _expect_int(line[56:70])
|
||||
if not nelementals == 0:
|
||||
raise ValueError("Unexpected value %d for nltvl (last entry of line 3)"
|
||||
% nelementals)
|
||||
|
||||
# Fourth line
|
||||
line = fid.readline().strip("\n")
|
||||
|
||||
ct = line.split()
|
||||
if not len(ct) == 3:
|
||||
raise ValueError("Expected 3 formats, got %s" % ct)
|
||||
|
||||
return cls(title, key,
|
||||
total_nlines, pointer_nlines, indices_nlines, values_nlines,
|
||||
mxtype, nrows, ncols, nnon_zeros,
|
||||
ct[0], ct[1], ct[2],
|
||||
rhs_nlines, nelementals)
|
||||
|
||||
def __init__(self, title, key,
|
||||
total_nlines, pointer_nlines, indices_nlines, values_nlines,
|
||||
mxtype, nrows, ncols, nnon_zeros,
|
||||
pointer_format_str, indices_format_str, values_format_str,
|
||||
right_hand_sides_nlines=0, nelementals=0):
|
||||
"""Do not use this directly, but the class ctrs (from_* functions)."""
|
||||
self.title = title
|
||||
self.key = key
|
||||
if title is None:
|
||||
title = "No Title"
|
||||
if len(title) > 72:
|
||||
raise ValueError("title cannot be > 72 characters")
|
||||
|
||||
if key is None:
|
||||
key = "|No Key"
|
||||
if len(key) > 8:
|
||||
warnings.warn("key is > 8 characters (key is %s)" % key,
|
||||
LineOverflow, stacklevel=3)
|
||||
|
||||
self.total_nlines = total_nlines
|
||||
self.pointer_nlines = pointer_nlines
|
||||
self.indices_nlines = indices_nlines
|
||||
self.values_nlines = values_nlines
|
||||
|
||||
parser = FortranFormatParser()
|
||||
pointer_format = parser.parse(pointer_format_str)
|
||||
if not isinstance(pointer_format, IntFormat):
|
||||
raise ValueError("Expected int format for pointer format, got %s"
|
||||
% pointer_format)
|
||||
|
||||
indices_format = parser.parse(indices_format_str)
|
||||
if not isinstance(indices_format, IntFormat):
|
||||
raise ValueError("Expected int format for indices format, got %s" %
|
||||
indices_format)
|
||||
|
||||
values_format = parser.parse(values_format_str)
|
||||
if isinstance(values_format, ExpFormat):
|
||||
if mxtype.value_type not in ["real", "complex"]:
|
||||
raise ValueError(f"Inconsistency between matrix type {mxtype} and "
|
||||
f"value type {values_format}")
|
||||
values_dtype = np.float64
|
||||
elif isinstance(values_format, IntFormat):
|
||||
if mxtype.value_type not in ["integer"]:
|
||||
raise ValueError(f"Inconsistency between matrix type {mxtype} and "
|
||||
f"value type {values_format}")
|
||||
# XXX: fortran int -> dtype association ?
|
||||
values_dtype = int
|
||||
else:
|
||||
raise ValueError(f"Unsupported format for values {values_format!r}")
|
||||
|
||||
self.pointer_format = pointer_format
|
||||
self.indices_format = indices_format
|
||||
self.values_format = values_format
|
||||
|
||||
self.pointer_dtype = np.int32
|
||||
self.indices_dtype = np.int32
|
||||
self.values_dtype = values_dtype
|
||||
|
||||
self.pointer_nlines = pointer_nlines
|
||||
self.pointer_nbytes_full = _nbytes_full(pointer_format, pointer_nlines)
|
||||
|
||||
self.indices_nlines = indices_nlines
|
||||
self.indices_nbytes_full = _nbytes_full(indices_format, indices_nlines)
|
||||
|
||||
self.values_nlines = values_nlines
|
||||
self.values_nbytes_full = _nbytes_full(values_format, values_nlines)
|
||||
|
||||
self.nrows = nrows
|
||||
self.ncols = ncols
|
||||
self.nnon_zeros = nnon_zeros
|
||||
self.nelementals = nelementals
|
||||
self.mxtype = mxtype
|
||||
|
||||
def dump(self):
|
||||
"""Gives the header corresponding to this instance as a string."""
|
||||
header = [self.title.ljust(72) + self.key.ljust(8)]
|
||||
|
||||
header.append("%14d%14d%14d%14d" %
|
||||
(self.total_nlines, self.pointer_nlines,
|
||||
self.indices_nlines, self.values_nlines))
|
||||
header.append("%14s%14d%14d%14d%14d" %
|
||||
(self.mxtype.fortran_format.ljust(14), self.nrows,
|
||||
self.ncols, self.nnon_zeros, 0))
|
||||
|
||||
pffmt = self.pointer_format.fortran_format
|
||||
iffmt = self.indices_format.fortran_format
|
||||
vffmt = self.values_format.fortran_format
|
||||
header.append("%16s%16s%20s" %
|
||||
(pffmt.ljust(16), iffmt.ljust(16), vffmt.ljust(20)))
|
||||
return "\n".join(header)
|
||||
|
||||
|
||||
def _expect_int(value, msg=None):
|
||||
try:
|
||||
return int(value)
|
||||
except ValueError as e:
|
||||
if msg is None:
|
||||
msg = "Expected an int, got %s"
|
||||
raise ValueError(msg % value) from e
|
||||
|
||||
|
||||
def _read_hb_data(content, header):
|
||||
# XXX: look at a way to reduce memory here (big string creation)
|
||||
ptr_string = "".join([content.read(header.pointer_nbytes_full),
|
||||
content.readline()])
|
||||
ptr = np.fromstring(ptr_string,
|
||||
dtype=int, sep=' ')
|
||||
|
||||
ind_string = "".join([content.read(header.indices_nbytes_full),
|
||||
content.readline()])
|
||||
ind = np.fromstring(ind_string,
|
||||
dtype=int, sep=' ')
|
||||
|
||||
val_string = "".join([content.read(header.values_nbytes_full),
|
||||
content.readline()])
|
||||
val = np.fromstring(val_string,
|
||||
dtype=header.values_dtype, sep=' ')
|
||||
|
||||
try:
|
||||
return csc_matrix((val, ind-1, ptr-1),
|
||||
shape=(header.nrows, header.ncols))
|
||||
except ValueError as e:
|
||||
raise e
|
||||
|
||||
|
||||
def _write_data(m, fid, header):
|
||||
m = m.tocsc(copy=False)
|
||||
|
||||
def write_array(f, ar, nlines, fmt):
|
||||
# ar_nlines is the number of full lines, n is the number of items per
|
||||
# line, ffmt the fortran format
|
||||
pyfmt = fmt.python_format
|
||||
pyfmt_full = pyfmt * fmt.repeat
|
||||
|
||||
# for each array to write, we first write the full lines, and special
|
||||
# case for partial line
|
||||
full = ar[:(nlines - 1) * fmt.repeat]
|
||||
for row in full.reshape((nlines-1, fmt.repeat)):
|
||||
f.write(pyfmt_full % tuple(row) + "\n")
|
||||
nremain = ar.size - full.size
|
||||
if nremain > 0:
|
||||
f.write((pyfmt * nremain) % tuple(ar[ar.size - nremain:]) + "\n")
|
||||
|
||||
fid.write(header.dump())
|
||||
fid.write("\n")
|
||||
# +1 is for Fortran one-based indexing
|
||||
write_array(fid, m.indptr+1, header.pointer_nlines,
|
||||
header.pointer_format)
|
||||
write_array(fid, m.indices+1, header.indices_nlines,
|
||||
header.indices_format)
|
||||
write_array(fid, m.data, header.values_nlines,
|
||||
header.values_format)
|
||||
|
||||
|
||||
class HBMatrixType:
|
||||
"""Class to hold the matrix type."""
|
||||
# q2f* translates qualified names to Fortran character
|
||||
_q2f_type = {
|
||||
"real": "R",
|
||||
"complex": "C",
|
||||
"pattern": "P",
|
||||
"integer": "I",
|
||||
}
|
||||
_q2f_structure = {
|
||||
"symmetric": "S",
|
||||
"unsymmetric": "U",
|
||||
"hermitian": "H",
|
||||
"skewsymmetric": "Z",
|
||||
"rectangular": "R"
|
||||
}
|
||||
_q2f_storage = {
|
||||
"assembled": "A",
|
||||
"elemental": "E",
|
||||
}
|
||||
|
||||
_f2q_type = {j: i for i, j in _q2f_type.items()}
|
||||
_f2q_structure = {j: i for i, j in _q2f_structure.items()}
|
||||
_f2q_storage = {j: i for i, j in _q2f_storage.items()}
|
||||
|
||||
@classmethod
|
||||
def from_fortran(cls, fmt):
|
||||
if not len(fmt) == 3:
|
||||
raise ValueError("Fortran format for matrix type should be 3 "
|
||||
"characters long")
|
||||
try:
|
||||
value_type = cls._f2q_type[fmt[0]]
|
||||
structure = cls._f2q_structure[fmt[1]]
|
||||
storage = cls._f2q_storage[fmt[2]]
|
||||
return cls(value_type, structure, storage)
|
||||
except KeyError as e:
|
||||
raise ValueError("Unrecognized format %s" % fmt) from e
|
||||
|
||||
def __init__(self, value_type, structure, storage="assembled"):
|
||||
self.value_type = value_type
|
||||
self.structure = structure
|
||||
self.storage = storage
|
||||
|
||||
if value_type not in self._q2f_type:
|
||||
raise ValueError("Unrecognized type %s" % value_type)
|
||||
if structure not in self._q2f_structure:
|
||||
raise ValueError("Unrecognized structure %s" % structure)
|
||||
if storage not in self._q2f_storage:
|
||||
raise ValueError("Unrecognized storage %s" % storage)
|
||||
|
||||
@property
|
||||
def fortran_format(self):
|
||||
return self._q2f_type[self.value_type] + \
|
||||
self._q2f_structure[self.structure] + \
|
||||
self._q2f_storage[self.storage]
|
||||
|
||||
def __repr__(self):
|
||||
return f"HBMatrixType({self.value_type}, {self.structure}, {self.storage})"
|
||||
|
||||
|
||||
class HBFile:
|
||||
def __init__(self, file, hb_info=None):
|
||||
"""Create a HBFile instance.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file : file-object
|
||||
StringIO work as well
|
||||
hb_info : HBInfo, optional
|
||||
Should be given as an argument for writing, in which case the file
|
||||
should be writable.
|
||||
"""
|
||||
self._fid = file
|
||||
if hb_info is None:
|
||||
self._hb_info = HBInfo.from_file(file)
|
||||
else:
|
||||
#raise OSError("file %s is not writable, and hb_info "
|
||||
# "was given." % file)
|
||||
self._hb_info = hb_info
|
||||
|
||||
@property
|
||||
def title(self):
|
||||
return self._hb_info.title
|
||||
|
||||
@property
|
||||
def key(self):
|
||||
return self._hb_info.key
|
||||
|
||||
@property
|
||||
def type(self):
|
||||
return self._hb_info.mxtype.value_type
|
||||
|
||||
@property
|
||||
def structure(self):
|
||||
return self._hb_info.mxtype.structure
|
||||
|
||||
@property
|
||||
def storage(self):
|
||||
return self._hb_info.mxtype.storage
|
||||
|
||||
def read_matrix(self):
|
||||
return _read_hb_data(self._fid, self._hb_info)
|
||||
|
||||
def write_matrix(self, m):
|
||||
return _write_data(m, self._fid, self._hb_info)
|
||||
|
||||
|
||||
def hb_read(path_or_open_file):
|
||||
"""Read HB-format file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path_or_open_file : path-like or file-like
|
||||
If a file-like object, it is used as-is. Otherwise, it is opened
|
||||
before reading.
|
||||
|
||||
Returns
|
||||
-------
|
||||
data : scipy.sparse.csc_matrix instance
|
||||
The data read from the HB file as a sparse matrix.
|
||||
|
||||
Notes
|
||||
-----
|
||||
At the moment not the full Harwell-Boeing format is supported. Supported
|
||||
features are:
|
||||
|
||||
- assembled, non-symmetric, real matrices
|
||||
- integer for pointer/indices
|
||||
- exponential format for float values, and int format
|
||||
|
||||
Examples
|
||||
--------
|
||||
We can read and write a harwell-boeing format file:
|
||||
|
||||
>>> from scipy.io import hb_read, hb_write
|
||||
>>> from scipy.sparse import csr_array, eye
|
||||
>>> data = csr_array(eye(3)) # create a sparse array
|
||||
>>> hb_write("data.hb", data) # write a hb file
|
||||
>>> print(hb_read("data.hb")) # read a hb file
|
||||
<Compressed Sparse Column sparse matrix of dtype 'float64'
|
||||
with 3 stored elements and shape (3, 3)>
|
||||
Coords Values
|
||||
(0, 0) 1.0
|
||||
(1, 1) 1.0
|
||||
(2, 2) 1.0
|
||||
"""
|
||||
def _get_matrix(fid):
|
||||
hb = HBFile(fid)
|
||||
return hb.read_matrix()
|
||||
|
||||
if hasattr(path_or_open_file, 'read'):
|
||||
return _get_matrix(path_or_open_file)
|
||||
else:
|
||||
with open(path_or_open_file) as f:
|
||||
return _get_matrix(f)
|
||||
|
||||
|
||||
def hb_write(path_or_open_file, m, hb_info=None):
|
||||
"""Write HB-format file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path_or_open_file : path-like or file-like
|
||||
If a file-like object, it is used as-is. Otherwise, it is opened
|
||||
before writing.
|
||||
m : sparse-matrix
|
||||
the sparse matrix to write
|
||||
hb_info : HBInfo
|
||||
contains the meta-data for write
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
|
||||
Notes
|
||||
-----
|
||||
At the moment not the full Harwell-Boeing format is supported. Supported
|
||||
features are:
|
||||
|
||||
- assembled, non-symmetric, real matrices
|
||||
- integer for pointer/indices
|
||||
- exponential format for float values, and int format
|
||||
|
||||
Examples
|
||||
--------
|
||||
We can read and write a harwell-boeing format file:
|
||||
|
||||
>>> from scipy.io import hb_read, hb_write
|
||||
>>> from scipy.sparse import csr_array, eye
|
||||
>>> data = csr_array(eye(3)) # create a sparse array
|
||||
>>> hb_write("data.hb", data) # write a hb file
|
||||
>>> print(hb_read("data.hb")) # read a hb file
|
||||
<Compressed Sparse Column sparse matrix of dtype 'float64'
|
||||
with 3 stored elements and shape (3, 3)>
|
||||
Coords Values
|
||||
(0, 0) 1.0
|
||||
(1, 1) 1.0
|
||||
(2, 2) 1.0
|
||||
"""
|
||||
m = m.tocsc(copy=False)
|
||||
|
||||
if hb_info is None:
|
||||
hb_info = HBInfo.from_data(m)
|
||||
|
||||
def _set_matrix(fid):
|
||||
hb = HBFile(fid, hb_info)
|
||||
return hb.write_matrix(m)
|
||||
|
||||
if hasattr(path_or_open_file, 'write'):
|
||||
return _set_matrix(path_or_open_file)
|
||||
else:
|
||||
with open(path_or_open_file, 'w') as f:
|
||||
return _set_matrix(f)
|
@ -0,0 +1,74 @@
|
||||
import numpy as np
|
||||
|
||||
from numpy.testing import assert_equal
|
||||
from pytest import raises as assert_raises
|
||||
|
||||
from scipy.io._harwell_boeing._fortran_format_parser import (
|
||||
FortranFormatParser, IntFormat, ExpFormat, BadFortranFormat)
|
||||
|
||||
|
||||
class TestFortranFormatParser:
|
||||
def setup_method(self):
|
||||
self.parser = FortranFormatParser()
|
||||
|
||||
def _test_equal(self, format, ref):
|
||||
ret = self.parser.parse(format)
|
||||
assert_equal(ret.__dict__, ref.__dict__)
|
||||
|
||||
def test_simple_int(self):
|
||||
self._test_equal("(I4)", IntFormat(4))
|
||||
|
||||
def test_simple_repeated_int(self):
|
||||
self._test_equal("(3I4)", IntFormat(4, repeat=3))
|
||||
|
||||
def test_simple_exp(self):
|
||||
self._test_equal("(E4.3)", ExpFormat(4, 3))
|
||||
|
||||
def test_exp_exp(self):
|
||||
self._test_equal("(E8.3E3)", ExpFormat(8, 3, 3))
|
||||
|
||||
def test_repeat_exp(self):
|
||||
self._test_equal("(2E4.3)", ExpFormat(4, 3, repeat=2))
|
||||
|
||||
def test_repeat_exp_exp(self):
|
||||
self._test_equal("(2E8.3E3)", ExpFormat(8, 3, 3, repeat=2))
|
||||
|
||||
def test_wrong_formats(self):
|
||||
def _test_invalid(bad_format):
|
||||
assert_raises(BadFortranFormat, lambda: self.parser.parse(bad_format))
|
||||
_test_invalid("I4")
|
||||
_test_invalid("(E4)")
|
||||
_test_invalid("(E4.)")
|
||||
_test_invalid("(E4.E3)")
|
||||
|
||||
|
||||
class TestIntFormat:
|
||||
def test_to_fortran(self):
|
||||
f = [IntFormat(10), IntFormat(12, 10), IntFormat(12, 10, 3)]
|
||||
res = ["(I10)", "(I12.10)", "(3I12.10)"]
|
||||
|
||||
for i, j in zip(f, res):
|
||||
assert_equal(i.fortran_format, j)
|
||||
|
||||
def test_from_number(self):
|
||||
f = [10, -12, 123456789]
|
||||
r_f = [IntFormat(3, repeat=26), IntFormat(4, repeat=20),
|
||||
IntFormat(10, repeat=8)]
|
||||
for i, j in zip(f, r_f):
|
||||
assert_equal(IntFormat.from_number(i).__dict__, j.__dict__)
|
||||
|
||||
|
||||
class TestExpFormat:
|
||||
def test_to_fortran(self):
|
||||
f = [ExpFormat(10, 5), ExpFormat(12, 10), ExpFormat(12, 10, min=3),
|
||||
ExpFormat(10, 5, repeat=3)]
|
||||
res = ["(E10.5)", "(E12.10)", "(E12.10E3)", "(3E10.5)"]
|
||||
|
||||
for i, j in zip(f, res):
|
||||
assert_equal(i.fortran_format, j)
|
||||
|
||||
def test_from_number(self):
|
||||
f = np.array([1.0, -1.2])
|
||||
r_f = [ExpFormat(24, 16, repeat=3), ExpFormat(25, 16, repeat=3)]
|
||||
for i, j in zip(f, r_f):
|
||||
assert_equal(ExpFormat.from_number(i).__dict__, j.__dict__)
|
@ -0,0 +1,65 @@
|
||||
from io import StringIO
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
|
||||
from numpy.testing import assert_equal, \
|
||||
assert_array_almost_equal_nulp
|
||||
|
||||
from scipy.sparse import coo_matrix, csc_matrix, rand
|
||||
|
||||
from scipy.io import hb_read, hb_write
|
||||
|
||||
|
||||
SIMPLE = """\
|
||||
No Title |No Key
|
||||
9 4 1 4
|
||||
RUA 100 100 10 0
|
||||
(26I3) (26I3) (3E23.15)
|
||||
1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
|
||||
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
|
||||
3 3 3 3 3 3 3 4 4 4 6 6 6 6 6 6 6 6 6 6 6 8 9 9 9 9
|
||||
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 11
|
||||
37 71 89 18 30 45 70 19 25 52
|
||||
2.971243799687726e-01 3.662366682877375e-01 4.786962174699534e-01
|
||||
6.490068647991184e-01 6.617490424831662e-02 8.870370343191623e-01
|
||||
4.196478590163001e-01 5.649603072111251e-01 9.934423887087086e-01
|
||||
6.912334991524289e-01
|
||||
"""
|
||||
|
||||
SIMPLE_MATRIX = coo_matrix(
|
||||
((0.297124379969, 0.366236668288, 0.47869621747, 0.649006864799,
|
||||
0.0661749042483, 0.887037034319, 0.419647859016,
|
||||
0.564960307211, 0.993442388709, 0.691233499152,),
|
||||
(np.array([[36, 70, 88, 17, 29, 44, 69, 18, 24, 51],
|
||||
[0, 4, 58, 61, 61, 72, 72, 73, 99, 99]]))))
|
||||
|
||||
|
||||
def assert_csc_almost_equal(r, l):
|
||||
r = csc_matrix(r)
|
||||
l = csc_matrix(l)
|
||||
assert_equal(r.indptr, l.indptr)
|
||||
assert_equal(r.indices, l.indices)
|
||||
assert_array_almost_equal_nulp(r.data, l.data, 10000)
|
||||
|
||||
|
||||
class TestHBReader:
|
||||
def test_simple(self):
|
||||
m = hb_read(StringIO(SIMPLE))
|
||||
assert_csc_almost_equal(m, SIMPLE_MATRIX)
|
||||
|
||||
|
||||
class TestHBReadWrite:
|
||||
|
||||
def check_save_load(self, value):
|
||||
with tempfile.NamedTemporaryFile(mode='w+t') as file:
|
||||
hb_write(file, value)
|
||||
file.file.seek(0)
|
||||
value_loaded = hb_read(file)
|
||||
assert_csc_almost_equal(value, value_loaded)
|
||||
|
||||
def test_simple(self):
|
||||
random_matrix = rand(10, 100, 0.1)
|
||||
for matrix_format in ('coo', 'csc', 'csr', 'bsr', 'dia', 'dok', 'lil'):
|
||||
matrix = random_matrix.asformat(matrix_format, copy=False)
|
||||
self.check_save_load(matrix)
|
918
venv/lib/python3.12/site-packages/scipy/io/_idl.py
Normal file
918
venv/lib/python3.12/site-packages/scipy/io/_idl.py
Normal file
@ -0,0 +1,918 @@
|
||||
# IDLSave - a python module to read IDL 'save' files
|
||||
# Copyright (c) 2010 Thomas P. Robitaille
|
||||
|
||||
# Many thanks to Craig Markwardt for publishing the Unofficial Format
|
||||
# Specification for IDL .sav files, without which this Python module would not
|
||||
# exist (http://cow.physics.wisc.edu/~craigm/idl/savefmt).
|
||||
|
||||
# This code was developed by with permission from ITT Visual Information
|
||||
# Systems. IDL(r) is a registered trademark of ITT Visual Information Systems,
|
||||
# Inc. for their Interactive Data Language software.
|
||||
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a
|
||||
# copy of this software and associated documentation files (the "Software"),
|
||||
# to deal in the Software without restriction, including without limitation
|
||||
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
# and/or sell copies of the Software, and to permit persons to whom the
|
||||
# Software is furnished to do so, subject to the following conditions:
|
||||
|
||||
# The above copyright notice and this permission notice shall be included in
|
||||
# all copies or substantial portions of the Software.
|
||||
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
# DEALINGS IN THE SOFTWARE.
|
||||
|
||||
__all__ = ['readsav']
|
||||
|
||||
import struct
|
||||
import numpy as np
|
||||
import tempfile
|
||||
import zlib
|
||||
import warnings
|
||||
|
||||
# Define the different data types that can be found in an IDL save file
|
||||
DTYPE_DICT = {1: '>u1',
|
||||
2: '>i2',
|
||||
3: '>i4',
|
||||
4: '>f4',
|
||||
5: '>f8',
|
||||
6: '>c8',
|
||||
7: '|O',
|
||||
8: '|O',
|
||||
9: '>c16',
|
||||
10: '|O',
|
||||
11: '|O',
|
||||
12: '>u2',
|
||||
13: '>u4',
|
||||
14: '>i8',
|
||||
15: '>u8'}
|
||||
|
||||
# Define the different record types that can be found in an IDL save file
|
||||
RECTYPE_DICT = {0: "START_MARKER",
|
||||
1: "COMMON_VARIABLE",
|
||||
2: "VARIABLE",
|
||||
3: "SYSTEM_VARIABLE",
|
||||
6: "END_MARKER",
|
||||
10: "TIMESTAMP",
|
||||
12: "COMPILED",
|
||||
13: "IDENTIFICATION",
|
||||
14: "VERSION",
|
||||
15: "HEAP_HEADER",
|
||||
16: "HEAP_DATA",
|
||||
17: "PROMOTE64",
|
||||
19: "NOTICE",
|
||||
20: "DESCRIPTION"}
|
||||
|
||||
# Define a dictionary to contain structure definitions
|
||||
STRUCT_DICT = {}
|
||||
|
||||
|
||||
def _align_32(f):
|
||||
'''Align to the next 32-bit position in a file'''
|
||||
|
||||
pos = f.tell()
|
||||
if pos % 4 != 0:
|
||||
f.seek(pos + 4 - pos % 4)
|
||||
return
|
||||
|
||||
|
||||
def _skip_bytes(f, n):
|
||||
'''Skip `n` bytes'''
|
||||
f.read(n)
|
||||
return
|
||||
|
||||
|
||||
def _read_bytes(f, n):
|
||||
'''Read the next `n` bytes'''
|
||||
return f.read(n)
|
||||
|
||||
|
||||
def _read_byte(f):
|
||||
'''Read a single byte'''
|
||||
return np.uint8(struct.unpack('>B', f.read(4)[:1])[0])
|
||||
|
||||
|
||||
def _read_long(f):
|
||||
'''Read a signed 32-bit integer'''
|
||||
return np.int32(struct.unpack('>l', f.read(4))[0])
|
||||
|
||||
|
||||
def _read_int16(f):
|
||||
'''Read a signed 16-bit integer'''
|
||||
return np.int16(struct.unpack('>h', f.read(4)[2:4])[0])
|
||||
|
||||
|
||||
def _read_int32(f):
|
||||
'''Read a signed 32-bit integer'''
|
||||
return np.int32(struct.unpack('>i', f.read(4))[0])
|
||||
|
||||
|
||||
def _read_int64(f):
|
||||
'''Read a signed 64-bit integer'''
|
||||
return np.int64(struct.unpack('>q', f.read(8))[0])
|
||||
|
||||
|
||||
def _read_uint16(f):
|
||||
'''Read an unsigned 16-bit integer'''
|
||||
return np.uint16(struct.unpack('>H', f.read(4)[2:4])[0])
|
||||
|
||||
|
||||
def _read_uint32(f):
|
||||
'''Read an unsigned 32-bit integer'''
|
||||
return np.uint32(struct.unpack('>I', f.read(4))[0])
|
||||
|
||||
|
||||
def _read_uint64(f):
|
||||
'''Read an unsigned 64-bit integer'''
|
||||
return np.uint64(struct.unpack('>Q', f.read(8))[0])
|
||||
|
||||
|
||||
def _read_float32(f):
|
||||
'''Read a 32-bit float'''
|
||||
return np.float32(struct.unpack('>f', f.read(4))[0])
|
||||
|
||||
|
||||
def _read_float64(f):
|
||||
'''Read a 64-bit float'''
|
||||
return np.float64(struct.unpack('>d', f.read(8))[0])
|
||||
|
||||
|
||||
class Pointer:
|
||||
'''Class used to define pointers'''
|
||||
|
||||
def __init__(self, index):
|
||||
self.index = index
|
||||
return
|
||||
|
||||
|
||||
class ObjectPointer(Pointer):
|
||||
'''Class used to define object pointers'''
|
||||
pass
|
||||
|
||||
|
||||
def _read_string(f):
|
||||
'''Read a string'''
|
||||
length = _read_long(f)
|
||||
if length > 0:
|
||||
chars = _read_bytes(f, length).decode('latin1')
|
||||
_align_32(f)
|
||||
else:
|
||||
chars = ''
|
||||
return chars
|
||||
|
||||
|
||||
def _read_string_data(f):
|
||||
'''Read a data string (length is specified twice)'''
|
||||
length = _read_long(f)
|
||||
if length > 0:
|
||||
length = _read_long(f)
|
||||
string_data = _read_bytes(f, length)
|
||||
_align_32(f)
|
||||
else:
|
||||
string_data = ''
|
||||
return string_data
|
||||
|
||||
|
||||
def _read_data(f, dtype):
|
||||
'''Read a variable with a specified data type'''
|
||||
if dtype == 1:
|
||||
if _read_int32(f) != 1:
|
||||
raise Exception("Error occurred while reading byte variable")
|
||||
return _read_byte(f)
|
||||
elif dtype == 2:
|
||||
return _read_int16(f)
|
||||
elif dtype == 3:
|
||||
return _read_int32(f)
|
||||
elif dtype == 4:
|
||||
return _read_float32(f)
|
||||
elif dtype == 5:
|
||||
return _read_float64(f)
|
||||
elif dtype == 6:
|
||||
real = _read_float32(f)
|
||||
imag = _read_float32(f)
|
||||
return np.complex64(real + imag * 1j)
|
||||
elif dtype == 7:
|
||||
return _read_string_data(f)
|
||||
elif dtype == 8:
|
||||
raise Exception("Should not be here - please report this")
|
||||
elif dtype == 9:
|
||||
real = _read_float64(f)
|
||||
imag = _read_float64(f)
|
||||
return np.complex128(real + imag * 1j)
|
||||
elif dtype == 10:
|
||||
return Pointer(_read_int32(f))
|
||||
elif dtype == 11:
|
||||
return ObjectPointer(_read_int32(f))
|
||||
elif dtype == 12:
|
||||
return _read_uint16(f)
|
||||
elif dtype == 13:
|
||||
return _read_uint32(f)
|
||||
elif dtype == 14:
|
||||
return _read_int64(f)
|
||||
elif dtype == 15:
|
||||
return _read_uint64(f)
|
||||
else:
|
||||
raise Exception("Unknown IDL type: %i - please report this" % dtype)
|
||||
|
||||
|
||||
def _read_structure(f, array_desc, struct_desc):
|
||||
'''
|
||||
Read a structure, with the array and structure descriptors given as
|
||||
`array_desc` and `structure_desc` respectively.
|
||||
'''
|
||||
|
||||
nrows = array_desc['nelements']
|
||||
columns = struct_desc['tagtable']
|
||||
|
||||
dtype = []
|
||||
for col in columns:
|
||||
if col['structure'] or col['array']:
|
||||
dtype.append(((col['name'].lower(), col['name']), np.object_))
|
||||
else:
|
||||
if col['typecode'] in DTYPE_DICT:
|
||||
dtype.append(((col['name'].lower(), col['name']),
|
||||
DTYPE_DICT[col['typecode']]))
|
||||
else:
|
||||
raise Exception("Variable type %i not implemented" %
|
||||
col['typecode'])
|
||||
|
||||
structure = np.rec.recarray((nrows, ), dtype=dtype)
|
||||
|
||||
for i in range(nrows):
|
||||
for col in columns:
|
||||
dtype = col['typecode']
|
||||
if col['structure']:
|
||||
structure[col['name']][i] = _read_structure(f,
|
||||
struct_desc['arrtable'][col['name']],
|
||||
struct_desc['structtable'][col['name']])
|
||||
elif col['array']:
|
||||
structure[col['name']][i] = _read_array(f, dtype,
|
||||
struct_desc['arrtable'][col['name']])
|
||||
else:
|
||||
structure[col['name']][i] = _read_data(f, dtype)
|
||||
|
||||
# Reshape structure if needed
|
||||
if array_desc['ndims'] > 1:
|
||||
dims = array_desc['dims'][:int(array_desc['ndims'])]
|
||||
dims.reverse()
|
||||
structure = structure.reshape(dims)
|
||||
|
||||
return structure
|
||||
|
||||
|
||||
def _read_array(f, typecode, array_desc):
|
||||
'''
|
||||
Read an array of type `typecode`, with the array descriptor given as
|
||||
`array_desc`.
|
||||
'''
|
||||
|
||||
if typecode in [1, 3, 4, 5, 6, 9, 13, 14, 15]:
|
||||
|
||||
if typecode == 1:
|
||||
nbytes = _read_int32(f)
|
||||
if nbytes != array_desc['nbytes']:
|
||||
warnings.warn("Not able to verify number of bytes from header",
|
||||
stacklevel=3)
|
||||
|
||||
# Read bytes as numpy array
|
||||
array = np.frombuffer(f.read(array_desc['nbytes']),
|
||||
dtype=DTYPE_DICT[typecode])
|
||||
|
||||
elif typecode in [2, 12]:
|
||||
|
||||
# These are 2 byte types, need to skip every two as they are not packed
|
||||
|
||||
array = np.frombuffer(f.read(array_desc['nbytes']*2),
|
||||
dtype=DTYPE_DICT[typecode])[1::2]
|
||||
|
||||
else:
|
||||
|
||||
# Read bytes into list
|
||||
array = []
|
||||
for i in range(array_desc['nelements']):
|
||||
dtype = typecode
|
||||
data = _read_data(f, dtype)
|
||||
array.append(data)
|
||||
|
||||
array = np.array(array, dtype=np.object_)
|
||||
|
||||
# Reshape array if needed
|
||||
if array_desc['ndims'] > 1:
|
||||
dims = array_desc['dims'][:int(array_desc['ndims'])]
|
||||
dims.reverse()
|
||||
array = array.reshape(dims)
|
||||
|
||||
# Go to next alignment position
|
||||
_align_32(f)
|
||||
|
||||
return array
|
||||
|
||||
|
||||
def _read_record(f):
|
||||
'''Function to read in a full record'''
|
||||
|
||||
record = {'rectype': _read_long(f)}
|
||||
|
||||
nextrec = _read_uint32(f)
|
||||
nextrec += _read_uint32(f).astype(np.int64) * 2**32
|
||||
|
||||
_skip_bytes(f, 4)
|
||||
|
||||
if record['rectype'] not in RECTYPE_DICT:
|
||||
raise Exception("Unknown RECTYPE: %i" % record['rectype'])
|
||||
|
||||
record['rectype'] = RECTYPE_DICT[record['rectype']]
|
||||
|
||||
if record['rectype'] in ["VARIABLE", "HEAP_DATA"]:
|
||||
|
||||
if record['rectype'] == "VARIABLE":
|
||||
record['varname'] = _read_string(f)
|
||||
else:
|
||||
record['heap_index'] = _read_long(f)
|
||||
_skip_bytes(f, 4)
|
||||
|
||||
rectypedesc = _read_typedesc(f)
|
||||
|
||||
if rectypedesc['typecode'] == 0:
|
||||
|
||||
if nextrec == f.tell():
|
||||
record['data'] = None # Indicates NULL value
|
||||
else:
|
||||
raise ValueError("Unexpected type code: 0")
|
||||
|
||||
else:
|
||||
|
||||
varstart = _read_long(f)
|
||||
if varstart != 7:
|
||||
raise Exception("VARSTART is not 7")
|
||||
|
||||
if rectypedesc['structure']:
|
||||
record['data'] = _read_structure(f, rectypedesc['array_desc'],
|
||||
rectypedesc['struct_desc'])
|
||||
elif rectypedesc['array']:
|
||||
record['data'] = _read_array(f, rectypedesc['typecode'],
|
||||
rectypedesc['array_desc'])
|
||||
else:
|
||||
dtype = rectypedesc['typecode']
|
||||
record['data'] = _read_data(f, dtype)
|
||||
|
||||
elif record['rectype'] == "TIMESTAMP":
|
||||
|
||||
_skip_bytes(f, 4*256)
|
||||
record['date'] = _read_string(f)
|
||||
record['user'] = _read_string(f)
|
||||
record['host'] = _read_string(f)
|
||||
|
||||
elif record['rectype'] == "VERSION":
|
||||
|
||||
record['format'] = _read_long(f)
|
||||
record['arch'] = _read_string(f)
|
||||
record['os'] = _read_string(f)
|
||||
record['release'] = _read_string(f)
|
||||
|
||||
elif record['rectype'] == "IDENTIFICATON":
|
||||
|
||||
record['author'] = _read_string(f)
|
||||
record['title'] = _read_string(f)
|
||||
record['idcode'] = _read_string(f)
|
||||
|
||||
elif record['rectype'] == "NOTICE":
|
||||
|
||||
record['notice'] = _read_string(f)
|
||||
|
||||
elif record['rectype'] == "DESCRIPTION":
|
||||
|
||||
record['description'] = _read_string_data(f)
|
||||
|
||||
elif record['rectype'] == "HEAP_HEADER":
|
||||
|
||||
record['nvalues'] = _read_long(f)
|
||||
record['indices'] = [_read_long(f) for _ in range(record['nvalues'])]
|
||||
|
||||
elif record['rectype'] == "COMMONBLOCK":
|
||||
|
||||
record['nvars'] = _read_long(f)
|
||||
record['name'] = _read_string(f)
|
||||
record['varnames'] = [_read_string(f) for _ in range(record['nvars'])]
|
||||
|
||||
elif record['rectype'] == "END_MARKER":
|
||||
|
||||
record['end'] = True
|
||||
|
||||
elif record['rectype'] == "UNKNOWN":
|
||||
|
||||
warnings.warn("Skipping UNKNOWN record", stacklevel=3)
|
||||
|
||||
elif record['rectype'] == "SYSTEM_VARIABLE":
|
||||
|
||||
warnings.warn("Skipping SYSTEM_VARIABLE record", stacklevel=3)
|
||||
|
||||
else:
|
||||
|
||||
raise Exception(f"record['rectype']={record['rectype']} not implemented")
|
||||
|
||||
f.seek(nextrec)
|
||||
|
||||
return record
|
||||
|
||||
|
||||
def _read_typedesc(f):
|
||||
'''Function to read in a type descriptor'''
|
||||
|
||||
typedesc = {'typecode': _read_long(f), 'varflags': _read_long(f)}
|
||||
|
||||
if typedesc['varflags'] & 2 == 2:
|
||||
raise Exception("System variables not implemented")
|
||||
|
||||
typedesc['array'] = typedesc['varflags'] & 4 == 4
|
||||
typedesc['structure'] = typedesc['varflags'] & 32 == 32
|
||||
|
||||
if typedesc['structure']:
|
||||
typedesc['array_desc'] = _read_arraydesc(f)
|
||||
typedesc['struct_desc'] = _read_structdesc(f)
|
||||
elif typedesc['array']:
|
||||
typedesc['array_desc'] = _read_arraydesc(f)
|
||||
|
||||
return typedesc
|
||||
|
||||
|
||||
def _read_arraydesc(f):
|
||||
'''Function to read in an array descriptor'''
|
||||
|
||||
arraydesc = {'arrstart': _read_long(f)}
|
||||
|
||||
if arraydesc['arrstart'] == 8:
|
||||
|
||||
_skip_bytes(f, 4)
|
||||
|
||||
arraydesc['nbytes'] = _read_long(f)
|
||||
arraydesc['nelements'] = _read_long(f)
|
||||
arraydesc['ndims'] = _read_long(f)
|
||||
|
||||
_skip_bytes(f, 8)
|
||||
|
||||
arraydesc['nmax'] = _read_long(f)
|
||||
|
||||
arraydesc['dims'] = [_read_long(f) for _ in range(arraydesc['nmax'])]
|
||||
|
||||
elif arraydesc['arrstart'] == 18:
|
||||
|
||||
warnings.warn("Using experimental 64-bit array read", stacklevel=3)
|
||||
|
||||
_skip_bytes(f, 8)
|
||||
|
||||
arraydesc['nbytes'] = _read_uint64(f)
|
||||
arraydesc['nelements'] = _read_uint64(f)
|
||||
arraydesc['ndims'] = _read_long(f)
|
||||
|
||||
_skip_bytes(f, 8)
|
||||
|
||||
arraydesc['nmax'] = 8
|
||||
|
||||
arraydesc['dims'] = []
|
||||
for d in range(arraydesc['nmax']):
|
||||
v = _read_long(f)
|
||||
if v != 0:
|
||||
raise Exception("Expected a zero in ARRAY_DESC")
|
||||
arraydesc['dims'].append(_read_long(f))
|
||||
|
||||
else:
|
||||
|
||||
raise Exception("Unknown ARRSTART: %i" % arraydesc['arrstart'])
|
||||
|
||||
return arraydesc
|
||||
|
||||
|
||||
def _read_structdesc(f):
|
||||
'''Function to read in a structure descriptor'''
|
||||
|
||||
structdesc = {}
|
||||
|
||||
structstart = _read_long(f)
|
||||
if structstart != 9:
|
||||
raise Exception("STRUCTSTART should be 9")
|
||||
|
||||
structdesc['name'] = _read_string(f)
|
||||
predef = _read_long(f)
|
||||
structdesc['ntags'] = _read_long(f)
|
||||
structdesc['nbytes'] = _read_long(f)
|
||||
|
||||
structdesc['predef'] = predef & 1
|
||||
structdesc['inherits'] = predef & 2
|
||||
structdesc['is_super'] = predef & 4
|
||||
|
||||
if not structdesc['predef']:
|
||||
|
||||
structdesc['tagtable'] = [_read_tagdesc(f)
|
||||
for _ in range(structdesc['ntags'])]
|
||||
|
||||
for tag in structdesc['tagtable']:
|
||||
tag['name'] = _read_string(f)
|
||||
|
||||
structdesc['arrtable'] = {tag['name']: _read_arraydesc(f)
|
||||
for tag in structdesc['tagtable']
|
||||
if tag['array']}
|
||||
|
||||
structdesc['structtable'] = {tag['name']: _read_structdesc(f)
|
||||
for tag in structdesc['tagtable']
|
||||
if tag['structure']}
|
||||
|
||||
if structdesc['inherits'] or structdesc['is_super']:
|
||||
structdesc['classname'] = _read_string(f)
|
||||
structdesc['nsupclasses'] = _read_long(f)
|
||||
structdesc['supclassnames'] = [
|
||||
_read_string(f) for _ in range(structdesc['nsupclasses'])]
|
||||
structdesc['supclasstable'] = [
|
||||
_read_structdesc(f) for _ in range(structdesc['nsupclasses'])]
|
||||
|
||||
STRUCT_DICT[structdesc['name']] = structdesc
|
||||
|
||||
else:
|
||||
|
||||
if structdesc['name'] not in STRUCT_DICT:
|
||||
raise Exception("PREDEF=1 but can't find definition")
|
||||
|
||||
structdesc = STRUCT_DICT[structdesc['name']]
|
||||
|
||||
return structdesc
|
||||
|
||||
|
||||
def _read_tagdesc(f):
|
||||
'''Function to read in a tag descriptor'''
|
||||
|
||||
tagdesc = {'offset': _read_long(f)}
|
||||
|
||||
if tagdesc['offset'] == -1:
|
||||
tagdesc['offset'] = _read_uint64(f)
|
||||
|
||||
tagdesc['typecode'] = _read_long(f)
|
||||
tagflags = _read_long(f)
|
||||
|
||||
tagdesc['array'] = tagflags & 4 == 4
|
||||
tagdesc['structure'] = tagflags & 32 == 32
|
||||
tagdesc['scalar'] = tagdesc['typecode'] in DTYPE_DICT
|
||||
# Assume '10'x is scalar
|
||||
|
||||
return tagdesc
|
||||
|
||||
|
||||
def _replace_heap(variable, heap):
|
||||
|
||||
if isinstance(variable, Pointer):
|
||||
|
||||
while isinstance(variable, Pointer):
|
||||
|
||||
if variable.index == 0:
|
||||
variable = None
|
||||
else:
|
||||
if variable.index in heap:
|
||||
variable = heap[variable.index]
|
||||
else:
|
||||
warnings.warn("Variable referenced by pointer not found "
|
||||
"in heap: variable will be set to None",
|
||||
stacklevel=3)
|
||||
variable = None
|
||||
|
||||
replace, new = _replace_heap(variable, heap)
|
||||
|
||||
if replace:
|
||||
variable = new
|
||||
|
||||
return True, variable
|
||||
|
||||
elif isinstance(variable, np.rec.recarray):
|
||||
|
||||
# Loop over records
|
||||
for ir, record in enumerate(variable):
|
||||
|
||||
replace, new = _replace_heap(record, heap)
|
||||
|
||||
if replace:
|
||||
variable[ir] = new
|
||||
|
||||
return False, variable
|
||||
|
||||
elif isinstance(variable, np.record):
|
||||
|
||||
# Loop over values
|
||||
for iv, value in enumerate(variable):
|
||||
|
||||
replace, new = _replace_heap(value, heap)
|
||||
|
||||
if replace:
|
||||
variable[iv] = new
|
||||
|
||||
return False, variable
|
||||
|
||||
elif isinstance(variable, np.ndarray):
|
||||
|
||||
# Loop over values if type is np.object_
|
||||
if variable.dtype.type is np.object_:
|
||||
|
||||
for iv in range(variable.size):
|
||||
|
||||
replace, new = _replace_heap(variable.item(iv), heap)
|
||||
|
||||
if replace:
|
||||
variable.reshape(-1)[iv] = new
|
||||
|
||||
return False, variable
|
||||
|
||||
else:
|
||||
|
||||
return False, variable
|
||||
|
||||
|
||||
class AttrDict(dict):
|
||||
'''
|
||||
A case-insensitive dictionary with access via item, attribute, and call
|
||||
notations:
|
||||
|
||||
>>> from scipy.io._idl import AttrDict
|
||||
>>> d = AttrDict()
|
||||
>>> d['Variable'] = 123
|
||||
>>> d['Variable']
|
||||
123
|
||||
>>> d.Variable
|
||||
123
|
||||
>>> d.variable
|
||||
123
|
||||
>>> d('VARIABLE')
|
||||
123
|
||||
>>> d['missing']
|
||||
Traceback (most recent error last):
|
||||
...
|
||||
KeyError: 'missing'
|
||||
>>> d.missing
|
||||
Traceback (most recent error last):
|
||||
...
|
||||
AttributeError: 'AttrDict' object has no attribute 'missing'
|
||||
'''
|
||||
|
||||
def __init__(self, init={}):
|
||||
dict.__init__(self, init)
|
||||
|
||||
def __getitem__(self, name):
|
||||
return super().__getitem__(name.lower())
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return super().__setitem__(key.lower(), value)
|
||||
|
||||
def __getattr__(self, name):
|
||||
try:
|
||||
return self.__getitem__(name)
|
||||
except KeyError:
|
||||
raise AttributeError(
|
||||
f"'{type(self)}' object has no attribute '{name}'") from None
|
||||
|
||||
__setattr__ = __setitem__
|
||||
__call__ = __getitem__
|
||||
|
||||
|
||||
def readsav(file_name, idict=None, python_dict=False,
|
||||
uncompressed_file_name=None, verbose=False):
|
||||
"""
|
||||
Read an IDL .sav file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file_name : str
|
||||
Name of the IDL save file.
|
||||
idict : dict, optional
|
||||
Dictionary in which to insert .sav file variables.
|
||||
python_dict : bool, optional
|
||||
By default, the object return is not a Python dictionary, but a
|
||||
case-insensitive dictionary with item, attribute, and call access
|
||||
to variables. To get a standard Python dictionary, set this option
|
||||
to True.
|
||||
uncompressed_file_name : str, optional
|
||||
This option only has an effect for .sav files written with the
|
||||
/compress option. If a file name is specified, compressed .sav
|
||||
files are uncompressed to this file. Otherwise, readsav will use
|
||||
the `tempfile` module to determine a temporary filename
|
||||
automatically, and will remove the temporary file upon successfully
|
||||
reading it in.
|
||||
verbose : bool, optional
|
||||
Whether to print out information about the save file, including
|
||||
the records read, and available variables.
|
||||
|
||||
Returns
|
||||
-------
|
||||
idl_dict : AttrDict or dict
|
||||
If `python_dict` is set to False (default), this function returns a
|
||||
case-insensitive dictionary with item, attribute, and call access
|
||||
to variables. If `python_dict` is set to True, this function
|
||||
returns a Python dictionary with all variable names in lowercase.
|
||||
If `idict` was specified, then variables are written to the
|
||||
dictionary specified, and the updated dictionary is returned.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from os.path import dirname, join as pjoin
|
||||
>>> import scipy.io as sio
|
||||
>>> from scipy.io import readsav
|
||||
|
||||
Get the filename for an example .sav file from the tests/data directory.
|
||||
|
||||
>>> data_dir = pjoin(dirname(sio.__file__), 'tests', 'data')
|
||||
>>> sav_fname = pjoin(data_dir, 'array_float32_1d.sav')
|
||||
|
||||
Load the .sav file contents.
|
||||
|
||||
>>> sav_data = readsav(sav_fname)
|
||||
|
||||
Get keys of the .sav file contents.
|
||||
|
||||
>>> print(sav_data.keys())
|
||||
dict_keys(['array1d'])
|
||||
|
||||
Access a content with a key.
|
||||
|
||||
>>> print(sav_data['array1d'])
|
||||
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
|
||||
0. 0. 0.]
|
||||
|
||||
"""
|
||||
|
||||
# Initialize record and variable holders
|
||||
records = []
|
||||
if python_dict or idict:
|
||||
variables = {}
|
||||
else:
|
||||
variables = AttrDict()
|
||||
|
||||
# Open the IDL file
|
||||
f = open(file_name, 'rb')
|
||||
|
||||
# Read the signature, which should be 'SR'
|
||||
signature = _read_bytes(f, 2)
|
||||
if signature != b'SR':
|
||||
raise Exception("Invalid SIGNATURE: %s" % signature)
|
||||
|
||||
# Next, the record format, which is '\x00\x04' for normal .sav
|
||||
# files, and '\x00\x06' for compressed .sav files.
|
||||
recfmt = _read_bytes(f, 2)
|
||||
|
||||
if recfmt == b'\x00\x04':
|
||||
pass
|
||||
|
||||
elif recfmt == b'\x00\x06':
|
||||
|
||||
if verbose:
|
||||
print("IDL Save file is compressed")
|
||||
|
||||
if uncompressed_file_name:
|
||||
fout = open(uncompressed_file_name, 'w+b')
|
||||
else:
|
||||
fout = tempfile.NamedTemporaryFile(suffix='.sav')
|
||||
|
||||
if verbose:
|
||||
print(" -> expanding to %s" % fout.name)
|
||||
|
||||
# Write header
|
||||
fout.write(b'SR\x00\x04')
|
||||
|
||||
# Cycle through records
|
||||
while True:
|
||||
|
||||
# Read record type
|
||||
rectype = _read_long(f)
|
||||
fout.write(struct.pack('>l', int(rectype)))
|
||||
|
||||
# Read position of next record and return as int
|
||||
nextrec = _read_uint32(f)
|
||||
nextrec += _read_uint32(f).astype(np.int64) * 2**32
|
||||
|
||||
# Read the unknown 4 bytes
|
||||
unknown = f.read(4)
|
||||
|
||||
# Check if the end of the file has been reached
|
||||
if RECTYPE_DICT[rectype] == 'END_MARKER':
|
||||
modval = np.int64(2**32)
|
||||
fout.write(struct.pack('>I', int(nextrec) % modval))
|
||||
fout.write(
|
||||
struct.pack('>I', int((nextrec - (nextrec % modval)) / modval))
|
||||
)
|
||||
fout.write(unknown)
|
||||
break
|
||||
|
||||
# Find current position
|
||||
pos = f.tell()
|
||||
|
||||
# Decompress record
|
||||
rec_string = zlib.decompress(f.read(nextrec-pos))
|
||||
|
||||
# Find new position of next record
|
||||
nextrec = fout.tell() + len(rec_string) + 12
|
||||
|
||||
# Write out record
|
||||
fout.write(struct.pack('>I', int(nextrec % 2**32)))
|
||||
fout.write(struct.pack('>I', int((nextrec - (nextrec % 2**32)) / 2**32)))
|
||||
fout.write(unknown)
|
||||
fout.write(rec_string)
|
||||
|
||||
# Close the original compressed file
|
||||
f.close()
|
||||
|
||||
# Set f to be the decompressed file, and skip the first four bytes
|
||||
f = fout
|
||||
f.seek(4)
|
||||
|
||||
else:
|
||||
raise Exception("Invalid RECFMT: %s" % recfmt)
|
||||
|
||||
# Loop through records, and add them to the list
|
||||
while True:
|
||||
r = _read_record(f)
|
||||
records.append(r)
|
||||
if 'end' in r:
|
||||
if r['end']:
|
||||
break
|
||||
|
||||
# Close the file
|
||||
f.close()
|
||||
|
||||
# Find heap data variables
|
||||
heap = {}
|
||||
for r in records:
|
||||
if r['rectype'] == "HEAP_DATA":
|
||||
heap[r['heap_index']] = r['data']
|
||||
|
||||
# Find all variables
|
||||
for r in records:
|
||||
if r['rectype'] == "VARIABLE":
|
||||
replace, new = _replace_heap(r['data'], heap)
|
||||
if replace:
|
||||
r['data'] = new
|
||||
variables[r['varname'].lower()] = r['data']
|
||||
|
||||
if verbose:
|
||||
|
||||
# Print out timestamp info about the file
|
||||
for record in records:
|
||||
if record['rectype'] == "TIMESTAMP":
|
||||
print("-"*50)
|
||||
print("Date: %s" % record['date'])
|
||||
print("User: %s" % record['user'])
|
||||
print("Host: %s" % record['host'])
|
||||
break
|
||||
|
||||
# Print out version info about the file
|
||||
for record in records:
|
||||
if record['rectype'] == "VERSION":
|
||||
print("-"*50)
|
||||
print("Format: %s" % record['format'])
|
||||
print("Architecture: %s" % record['arch'])
|
||||
print("Operating System: %s" % record['os'])
|
||||
print("IDL Version: %s" % record['release'])
|
||||
break
|
||||
|
||||
# Print out identification info about the file
|
||||
for record in records:
|
||||
if record['rectype'] == "IDENTIFICATON":
|
||||
print("-"*50)
|
||||
print("Author: %s" % record['author'])
|
||||
print("Title: %s" % record['title'])
|
||||
print("ID Code: %s" % record['idcode'])
|
||||
break
|
||||
|
||||
# Print out descriptions saved with the file
|
||||
for record in records:
|
||||
if record['rectype'] == "DESCRIPTION":
|
||||
print("-"*50)
|
||||
print("Description: %s" % record['description'])
|
||||
break
|
||||
|
||||
print("-"*50)
|
||||
print("Successfully read %i records of which:" %
|
||||
(len(records)))
|
||||
|
||||
# Create convenience list of record types
|
||||
rectypes = [r['rectype'] for r in records]
|
||||
|
||||
for rt in set(rectypes):
|
||||
if rt != 'END_MARKER':
|
||||
print(" - %i are of type %s" % (rectypes.count(rt), rt))
|
||||
print("-"*50)
|
||||
|
||||
if 'VARIABLE' in rectypes:
|
||||
print("Available variables:")
|
||||
for var in variables:
|
||||
print(f" - {var} [{type(variables[var])}]")
|
||||
print("-"*50)
|
||||
|
||||
if idict:
|
||||
for var in variables:
|
||||
idict[var] = variables[var]
|
||||
return idict
|
||||
else:
|
||||
return variables
|
961
venv/lib/python3.12/site-packages/scipy/io/_mmio.py
Normal file
961
venv/lib/python3.12/site-packages/scipy/io/_mmio.py
Normal file
@ -0,0 +1,961 @@
|
||||
"""
|
||||
Matrix Market I/O in Python.
|
||||
See http://math.nist.gov/MatrixMarket/formats.html
|
||||
for information about the Matrix Market format.
|
||||
"""
|
||||
#
|
||||
# Author: Pearu Peterson <pearu@cens.ioc.ee>
|
||||
# Created: October, 2004
|
||||
#
|
||||
# References:
|
||||
# http://math.nist.gov/MatrixMarket/
|
||||
#
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from numpy import (asarray, real, imag, conj, zeros, ndarray, concatenate,
|
||||
ones, can_cast)
|
||||
|
||||
from scipy.sparse import coo_matrix, issparse
|
||||
|
||||
__all__ = ['mminfo', 'mmread', 'mmwrite', 'MMFile']
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
def asstr(s):
|
||||
if isinstance(s, bytes):
|
||||
return s.decode('latin1')
|
||||
return str(s)
|
||||
|
||||
|
||||
def mminfo(source):
|
||||
"""
|
||||
Return size and storage parameters from Matrix Market file-like 'source'.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : str or file-like
|
||||
Matrix Market filename (extension .mtx) or open file-like object
|
||||
|
||||
Returns
|
||||
-------
|
||||
rows : int
|
||||
Number of matrix rows.
|
||||
cols : int
|
||||
Number of matrix columns.
|
||||
entries : int
|
||||
Number of non-zero entries of a sparse matrix
|
||||
or rows*cols for a dense matrix.
|
||||
format : str
|
||||
Either 'coordinate' or 'array'.
|
||||
field : str
|
||||
Either 'real', 'complex', 'pattern', or 'integer'.
|
||||
symmetry : str
|
||||
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from io import StringIO
|
||||
>>> from scipy.io import mminfo
|
||||
|
||||
>>> text = '''%%MatrixMarket matrix coordinate real general
|
||||
... 5 5 7
|
||||
... 2 3 1.0
|
||||
... 3 4 2.0
|
||||
... 3 5 3.0
|
||||
... 4 1 4.0
|
||||
... 4 2 5.0
|
||||
... 4 3 6.0
|
||||
... 4 4 7.0
|
||||
... '''
|
||||
|
||||
|
||||
``mminfo(source)`` returns the number of rows, number of columns,
|
||||
format, field type and symmetry attribute of the source file.
|
||||
|
||||
>>> mminfo(StringIO(text))
|
||||
(5, 5, 7, 'coordinate', 'real', 'general')
|
||||
"""
|
||||
return MMFile.info(source)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def mmread(source):
|
||||
"""
|
||||
Reads the contents of a Matrix Market file-like 'source' into a matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : str or file-like
|
||||
Matrix Market filename (extensions .mtx, .mtz.gz)
|
||||
or open file-like object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
a : ndarray or coo_matrix
|
||||
Dense or sparse matrix depending on the matrix format in the
|
||||
Matrix Market file.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from io import StringIO
|
||||
>>> from scipy.io import mmread
|
||||
|
||||
>>> text = '''%%MatrixMarket matrix coordinate real general
|
||||
... 5 5 7
|
||||
... 2 3 1.0
|
||||
... 3 4 2.0
|
||||
... 3 5 3.0
|
||||
... 4 1 4.0
|
||||
... 4 2 5.0
|
||||
... 4 3 6.0
|
||||
... 4 4 7.0
|
||||
... '''
|
||||
|
||||
``mmread(source)`` returns the data as sparse matrix in COO format.
|
||||
|
||||
>>> m = mmread(StringIO(text))
|
||||
>>> m
|
||||
<5x5 sparse matrix of type '<class 'numpy.float64'>'
|
||||
with 7 stored elements in COOrdinate format>
|
||||
>>> m.A
|
||||
array([[0., 0., 0., 0., 0.],
|
||||
[0., 0., 1., 0., 0.],
|
||||
[0., 0., 0., 2., 3.],
|
||||
[4., 5., 6., 7., 0.],
|
||||
[0., 0., 0., 0., 0.]])
|
||||
"""
|
||||
return MMFile().read(source)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def mmwrite(target, a, comment='', field=None, precision=None, symmetry=None):
|
||||
r"""
|
||||
Writes the sparse or dense array `a` to Matrix Market file-like `target`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
target : str or file-like
|
||||
Matrix Market filename (extension .mtx) or open file-like object.
|
||||
a : array like
|
||||
Sparse or dense 2-D array.
|
||||
comment : str, optional
|
||||
Comments to be prepended to the Matrix Market file.
|
||||
field : None or str, optional
|
||||
Either 'real', 'complex', 'pattern', or 'integer'.
|
||||
precision : None or int, optional
|
||||
Number of digits to display for real or complex values.
|
||||
symmetry : None or str, optional
|
||||
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
|
||||
If symmetry is None the symmetry type of 'a' is determined by its
|
||||
values.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from io import BytesIO
|
||||
>>> import numpy as np
|
||||
>>> from scipy.sparse import coo_matrix
|
||||
>>> from scipy.io import mmwrite
|
||||
|
||||
Write a small NumPy array to a matrix market file. The file will be
|
||||
written in the ``'array'`` format.
|
||||
|
||||
>>> a = np.array([[1.0, 0, 0, 0], [0, 2.5, 0, 6.25]])
|
||||
>>> target = BytesIO()
|
||||
>>> mmwrite(target, a)
|
||||
>>> print(target.getvalue().decode('latin1'))
|
||||
%%MatrixMarket matrix array real general
|
||||
%
|
||||
2 4
|
||||
1.0000000000000000e+00
|
||||
0.0000000000000000e+00
|
||||
0.0000000000000000e+00
|
||||
2.5000000000000000e+00
|
||||
0.0000000000000000e+00
|
||||
0.0000000000000000e+00
|
||||
0.0000000000000000e+00
|
||||
6.2500000000000000e+00
|
||||
|
||||
Add a comment to the output file, and set the precision to 3.
|
||||
|
||||
>>> target = BytesIO()
|
||||
>>> mmwrite(target, a, comment='\n Some test data.\n', precision=3)
|
||||
>>> print(target.getvalue().decode('latin1'))
|
||||
%%MatrixMarket matrix array real general
|
||||
%
|
||||
% Some test data.
|
||||
%
|
||||
2 4
|
||||
1.000e+00
|
||||
0.000e+00
|
||||
0.000e+00
|
||||
2.500e+00
|
||||
0.000e+00
|
||||
0.000e+00
|
||||
0.000e+00
|
||||
6.250e+00
|
||||
|
||||
Convert to a sparse matrix before calling ``mmwrite``. This will
|
||||
result in the output format being ``'coordinate'`` rather than
|
||||
``'array'``.
|
||||
|
||||
>>> target = BytesIO()
|
||||
>>> mmwrite(target, coo_matrix(a), precision=3)
|
||||
>>> print(target.getvalue().decode('latin1'))
|
||||
%%MatrixMarket matrix coordinate real general
|
||||
%
|
||||
2 4 3
|
||||
1 1 1.00e+00
|
||||
2 2 2.50e+00
|
||||
2 4 6.25e+00
|
||||
|
||||
Write a complex Hermitian array to a matrix market file. Note that
|
||||
only six values are actually written to the file; the other values
|
||||
are implied by the symmetry.
|
||||
|
||||
>>> z = np.array([[3, 1+2j, 4-3j], [1-2j, 1, -5j], [4+3j, 5j, 2.5]])
|
||||
>>> z
|
||||
array([[ 3. +0.j, 1. +2.j, 4. -3.j],
|
||||
[ 1. -2.j, 1. +0.j, -0. -5.j],
|
||||
[ 4. +3.j, 0. +5.j, 2.5+0.j]])
|
||||
|
||||
>>> target = BytesIO()
|
||||
>>> mmwrite(target, z, precision=2)
|
||||
>>> print(target.getvalue().decode('latin1'))
|
||||
%%MatrixMarket matrix array complex hermitian
|
||||
%
|
||||
3 3
|
||||
3.00e+00 0.00e+00
|
||||
1.00e+00 -2.00e+00
|
||||
4.00e+00 3.00e+00
|
||||
1.00e+00 0.00e+00
|
||||
0.00e+00 5.00e+00
|
||||
2.50e+00 0.00e+00
|
||||
|
||||
"""
|
||||
MMFile().write(target, a, comment, field, precision, symmetry)
|
||||
|
||||
|
||||
###############################################################################
|
||||
class MMFile:
|
||||
__slots__ = ('_rows',
|
||||
'_cols',
|
||||
'_entries',
|
||||
'_format',
|
||||
'_field',
|
||||
'_symmetry')
|
||||
|
||||
@property
|
||||
def rows(self):
|
||||
return self._rows
|
||||
|
||||
@property
|
||||
def cols(self):
|
||||
return self._cols
|
||||
|
||||
@property
|
||||
def entries(self):
|
||||
return self._entries
|
||||
|
||||
@property
|
||||
def format(self):
|
||||
return self._format
|
||||
|
||||
@property
|
||||
def field(self):
|
||||
return self._field
|
||||
|
||||
@property
|
||||
def symmetry(self):
|
||||
return self._symmetry
|
||||
|
||||
@property
|
||||
def has_symmetry(self):
|
||||
return self._symmetry in (self.SYMMETRY_SYMMETRIC,
|
||||
self.SYMMETRY_SKEW_SYMMETRIC,
|
||||
self.SYMMETRY_HERMITIAN)
|
||||
|
||||
# format values
|
||||
FORMAT_COORDINATE = 'coordinate'
|
||||
FORMAT_ARRAY = 'array'
|
||||
FORMAT_VALUES = (FORMAT_COORDINATE, FORMAT_ARRAY)
|
||||
|
||||
@classmethod
|
||||
def _validate_format(self, format):
|
||||
if format not in self.FORMAT_VALUES:
|
||||
msg = f'unknown format type {format}, must be one of {self.FORMAT_VALUES}'
|
||||
raise ValueError(msg)
|
||||
|
||||
# field values
|
||||
FIELD_INTEGER = 'integer'
|
||||
FIELD_UNSIGNED = 'unsigned-integer'
|
||||
FIELD_REAL = 'real'
|
||||
FIELD_COMPLEX = 'complex'
|
||||
FIELD_PATTERN = 'pattern'
|
||||
FIELD_VALUES = (FIELD_INTEGER, FIELD_UNSIGNED, FIELD_REAL, FIELD_COMPLEX,
|
||||
FIELD_PATTERN)
|
||||
|
||||
@classmethod
|
||||
def _validate_field(self, field):
|
||||
if field not in self.FIELD_VALUES:
|
||||
msg = f'unknown field type {field}, must be one of {self.FIELD_VALUES}'
|
||||
raise ValueError(msg)
|
||||
|
||||
# symmetry values
|
||||
SYMMETRY_GENERAL = 'general'
|
||||
SYMMETRY_SYMMETRIC = 'symmetric'
|
||||
SYMMETRY_SKEW_SYMMETRIC = 'skew-symmetric'
|
||||
SYMMETRY_HERMITIAN = 'hermitian'
|
||||
SYMMETRY_VALUES = (SYMMETRY_GENERAL, SYMMETRY_SYMMETRIC,
|
||||
SYMMETRY_SKEW_SYMMETRIC, SYMMETRY_HERMITIAN)
|
||||
|
||||
@classmethod
|
||||
def _validate_symmetry(self, symmetry):
|
||||
if symmetry not in self.SYMMETRY_VALUES:
|
||||
raise ValueError(f'unknown symmetry type {symmetry}, '
|
||||
f'must be one of {self.SYMMETRY_VALUES}')
|
||||
|
||||
DTYPES_BY_FIELD = {FIELD_INTEGER: 'intp',
|
||||
FIELD_UNSIGNED: 'uint64',
|
||||
FIELD_REAL: 'd',
|
||||
FIELD_COMPLEX: 'D',
|
||||
FIELD_PATTERN: 'd'}
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
@staticmethod
|
||||
def reader():
|
||||
pass
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
@staticmethod
|
||||
def writer():
|
||||
pass
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
@classmethod
|
||||
def info(self, source):
|
||||
"""
|
||||
Return size, storage parameters from Matrix Market file-like 'source'.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : str or file-like
|
||||
Matrix Market filename (extension .mtx) or open file-like object
|
||||
|
||||
Returns
|
||||
-------
|
||||
rows : int
|
||||
Number of matrix rows.
|
||||
cols : int
|
||||
Number of matrix columns.
|
||||
entries : int
|
||||
Number of non-zero entries of a sparse matrix
|
||||
or rows*cols for a dense matrix.
|
||||
format : str
|
||||
Either 'coordinate' or 'array'.
|
||||
field : str
|
||||
Either 'real', 'complex', 'pattern', or 'integer'.
|
||||
symmetry : str
|
||||
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
|
||||
"""
|
||||
|
||||
stream, close_it = self._open(source)
|
||||
|
||||
try:
|
||||
|
||||
# read and validate header line
|
||||
line = stream.readline()
|
||||
mmid, matrix, format, field, symmetry = \
|
||||
(asstr(part.strip()) for part in line.split())
|
||||
if not mmid.startswith('%%MatrixMarket'):
|
||||
raise ValueError('source is not in Matrix Market format')
|
||||
if not matrix.lower() == 'matrix':
|
||||
raise ValueError("Problem reading file header: " + line)
|
||||
|
||||
# http://math.nist.gov/MatrixMarket/formats.html
|
||||
if format.lower() == 'array':
|
||||
format = self.FORMAT_ARRAY
|
||||
elif format.lower() == 'coordinate':
|
||||
format = self.FORMAT_COORDINATE
|
||||
|
||||
# skip comments
|
||||
# line.startswith('%')
|
||||
while line:
|
||||
if line.lstrip() and line.lstrip()[0] in ['%', 37]:
|
||||
line = stream.readline()
|
||||
else:
|
||||
break
|
||||
|
||||
# skip empty lines
|
||||
while not line.strip():
|
||||
line = stream.readline()
|
||||
|
||||
split_line = line.split()
|
||||
if format == self.FORMAT_ARRAY:
|
||||
if not len(split_line) == 2:
|
||||
raise ValueError("Header line not of length 2: " +
|
||||
line.decode('ascii'))
|
||||
rows, cols = map(int, split_line)
|
||||
entries = rows * cols
|
||||
else:
|
||||
if not len(split_line) == 3:
|
||||
raise ValueError("Header line not of length 3: " +
|
||||
line.decode('ascii'))
|
||||
rows, cols, entries = map(int, split_line)
|
||||
|
||||
return (rows, cols, entries, format, field.lower(),
|
||||
symmetry.lower())
|
||||
|
||||
finally:
|
||||
if close_it:
|
||||
stream.close()
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
@staticmethod
|
||||
def _open(filespec, mode='rb'):
|
||||
""" Return an open file stream for reading based on source.
|
||||
|
||||
If source is a file name, open it (after trying to find it with mtx and
|
||||
gzipped mtx extensions). Otherwise, just return source.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filespec : str or file-like
|
||||
String giving file name or file-like object
|
||||
mode : str, optional
|
||||
Mode with which to open file, if `filespec` is a file name.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fobj : file-like
|
||||
Open file-like object.
|
||||
close_it : bool
|
||||
True if the calling function should close this file when done,
|
||||
false otherwise.
|
||||
"""
|
||||
# If 'filespec' is path-like (str, pathlib.Path, os.DirEntry, other class
|
||||
# implementing a '__fspath__' method), try to convert it to str. If this
|
||||
# fails by throwing a 'TypeError', assume it's an open file handle and
|
||||
# return it as-is.
|
||||
try:
|
||||
filespec = os.fspath(filespec)
|
||||
except TypeError:
|
||||
return filespec, False
|
||||
|
||||
# 'filespec' is definitely a str now
|
||||
|
||||
# open for reading
|
||||
if mode[0] == 'r':
|
||||
|
||||
# determine filename plus extension
|
||||
if not os.path.isfile(filespec):
|
||||
if os.path.isfile(filespec+'.mtx'):
|
||||
filespec = filespec + '.mtx'
|
||||
elif os.path.isfile(filespec+'.mtx.gz'):
|
||||
filespec = filespec + '.mtx.gz'
|
||||
elif os.path.isfile(filespec+'.mtx.bz2'):
|
||||
filespec = filespec + '.mtx.bz2'
|
||||
# open filename
|
||||
if filespec.endswith('.gz'):
|
||||
import gzip
|
||||
stream = gzip.open(filespec, mode)
|
||||
elif filespec.endswith('.bz2'):
|
||||
import bz2
|
||||
stream = bz2.BZ2File(filespec, 'rb')
|
||||
else:
|
||||
stream = open(filespec, mode)
|
||||
|
||||
# open for writing
|
||||
else:
|
||||
if filespec[-4:] != '.mtx':
|
||||
filespec = filespec + '.mtx'
|
||||
stream = open(filespec, mode)
|
||||
|
||||
return stream, True
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
@staticmethod
|
||||
def _get_symmetry(a):
|
||||
m, n = a.shape
|
||||
if m != n:
|
||||
return MMFile.SYMMETRY_GENERAL
|
||||
issymm = True
|
||||
isskew = True
|
||||
isherm = a.dtype.char in 'FD'
|
||||
|
||||
# sparse input
|
||||
if issparse(a):
|
||||
# check if number of nonzero entries of lower and upper triangle
|
||||
# matrix are equal
|
||||
a = a.tocoo()
|
||||
(row, col) = a.nonzero()
|
||||
if (row < col).sum() != (row > col).sum():
|
||||
return MMFile.SYMMETRY_GENERAL
|
||||
|
||||
# define iterator over symmetric pair entries
|
||||
a = a.todok()
|
||||
|
||||
def symm_iterator():
|
||||
for ((i, j), aij) in a.items():
|
||||
if i > j:
|
||||
aji = a[j, i]
|
||||
yield (aij, aji, False)
|
||||
elif i == j:
|
||||
yield (aij, aij, True)
|
||||
|
||||
# non-sparse input
|
||||
else:
|
||||
# define iterator over symmetric pair entries
|
||||
def symm_iterator():
|
||||
for j in range(n):
|
||||
for i in range(j, n):
|
||||
aij, aji = a[i][j], a[j][i]
|
||||
yield (aij, aji, i == j)
|
||||
|
||||
# check for symmetry
|
||||
# yields aij, aji, is_diagonal
|
||||
for (aij, aji, is_diagonal) in symm_iterator():
|
||||
if isskew and is_diagonal and aij != 0:
|
||||
isskew = False
|
||||
else:
|
||||
if issymm and aij != aji:
|
||||
issymm = False
|
||||
with np.errstate(over="ignore"):
|
||||
# This can give a warning for uint dtypes, so silence that
|
||||
if isskew and aij != -aji:
|
||||
isskew = False
|
||||
if isherm and aij != conj(aji):
|
||||
isherm = False
|
||||
if not (issymm or isskew or isherm):
|
||||
break
|
||||
|
||||
# return symmetry value
|
||||
if issymm:
|
||||
return MMFile.SYMMETRY_SYMMETRIC
|
||||
if isskew:
|
||||
return MMFile.SYMMETRY_SKEW_SYMMETRIC
|
||||
if isherm:
|
||||
return MMFile.SYMMETRY_HERMITIAN
|
||||
return MMFile.SYMMETRY_GENERAL
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
@staticmethod
|
||||
def _field_template(field, precision):
|
||||
return {MMFile.FIELD_REAL: '%%.%ie\n' % precision,
|
||||
MMFile.FIELD_INTEGER: '%i\n',
|
||||
MMFile.FIELD_UNSIGNED: '%u\n',
|
||||
MMFile.FIELD_COMPLEX: '%%.%ie %%.%ie\n' %
|
||||
(precision, precision)
|
||||
}.get(field, None)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
def __init__(self, **kwargs):
|
||||
self._init_attrs(**kwargs)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
def read(self, source):
|
||||
"""
|
||||
Reads the contents of a Matrix Market file-like 'source' into a matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : str or file-like
|
||||
Matrix Market filename (extensions .mtx, .mtz.gz)
|
||||
or open file object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
a : ndarray or coo_matrix
|
||||
Dense or sparse matrix depending on the matrix format in the
|
||||
Matrix Market file.
|
||||
"""
|
||||
stream, close_it = self._open(source)
|
||||
|
||||
try:
|
||||
self._parse_header(stream)
|
||||
return self._parse_body(stream)
|
||||
|
||||
finally:
|
||||
if close_it:
|
||||
stream.close()
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
def write(self, target, a, comment='', field=None, precision=None,
|
||||
symmetry=None):
|
||||
"""
|
||||
Writes sparse or dense array `a` to Matrix Market file-like `target`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
target : str or file-like
|
||||
Matrix Market filename (extension .mtx) or open file-like object.
|
||||
a : array like
|
||||
Sparse or dense 2-D array.
|
||||
comment : str, optional
|
||||
Comments to be prepended to the Matrix Market file.
|
||||
field : None or str, optional
|
||||
Either 'real', 'complex', 'pattern', or 'integer'.
|
||||
precision : None or int, optional
|
||||
Number of digits to display for real or complex values.
|
||||
symmetry : None or str, optional
|
||||
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
|
||||
If symmetry is None the symmetry type of 'a' is determined by its
|
||||
values.
|
||||
"""
|
||||
|
||||
stream, close_it = self._open(target, 'wb')
|
||||
|
||||
try:
|
||||
self._write(stream, a, comment, field, precision, symmetry)
|
||||
|
||||
finally:
|
||||
if close_it:
|
||||
stream.close()
|
||||
else:
|
||||
stream.flush()
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
def _init_attrs(self, **kwargs):
|
||||
"""
|
||||
Initialize each attributes with the corresponding keyword arg value
|
||||
or a default of None
|
||||
"""
|
||||
|
||||
attrs = self.__class__.__slots__
|
||||
public_attrs = [attr[1:] for attr in attrs]
|
||||
invalid_keys = set(kwargs.keys()) - set(public_attrs)
|
||||
|
||||
if invalid_keys:
|
||||
raise ValueError('''found {} invalid keyword arguments, please only
|
||||
use {}'''.format(tuple(invalid_keys),
|
||||
public_attrs))
|
||||
|
||||
for attr in attrs:
|
||||
setattr(self, attr, kwargs.get(attr[1:], None))
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
def _parse_header(self, stream):
|
||||
rows, cols, entries, format, field, symmetry = \
|
||||
self.__class__.info(stream)
|
||||
self._init_attrs(rows=rows, cols=cols, entries=entries, format=format,
|
||||
field=field, symmetry=symmetry)
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
def _parse_body(self, stream):
|
||||
rows, cols, entries, format, field, symm = (self.rows, self.cols,
|
||||
self.entries, self.format,
|
||||
self.field, self.symmetry)
|
||||
|
||||
dtype = self.DTYPES_BY_FIELD.get(field, None)
|
||||
|
||||
has_symmetry = self.has_symmetry
|
||||
is_integer = field == self.FIELD_INTEGER
|
||||
is_unsigned_integer = field == self.FIELD_UNSIGNED
|
||||
is_complex = field == self.FIELD_COMPLEX
|
||||
is_skew = symm == self.SYMMETRY_SKEW_SYMMETRIC
|
||||
is_herm = symm == self.SYMMETRY_HERMITIAN
|
||||
is_pattern = field == self.FIELD_PATTERN
|
||||
|
||||
if format == self.FORMAT_ARRAY:
|
||||
a = zeros((rows, cols), dtype=dtype)
|
||||
line = 1
|
||||
i, j = 0, 0
|
||||
if is_skew:
|
||||
a[i, j] = 0
|
||||
if i < rows - 1:
|
||||
i += 1
|
||||
while line:
|
||||
line = stream.readline()
|
||||
# line.startswith('%')
|
||||
if not line or line[0] in ['%', 37] or not line.strip():
|
||||
continue
|
||||
if is_integer:
|
||||
aij = int(line)
|
||||
elif is_unsigned_integer:
|
||||
aij = int(line)
|
||||
elif is_complex:
|
||||
aij = complex(*map(float, line.split()))
|
||||
else:
|
||||
aij = float(line)
|
||||
a[i, j] = aij
|
||||
if has_symmetry and i != j:
|
||||
if is_skew:
|
||||
a[j, i] = -aij
|
||||
elif is_herm:
|
||||
a[j, i] = conj(aij)
|
||||
else:
|
||||
a[j, i] = aij
|
||||
if i < rows-1:
|
||||
i = i + 1
|
||||
else:
|
||||
j = j + 1
|
||||
if not has_symmetry:
|
||||
i = 0
|
||||
else:
|
||||
i = j
|
||||
if is_skew:
|
||||
a[i, j] = 0
|
||||
if i < rows-1:
|
||||
i += 1
|
||||
|
||||
if is_skew:
|
||||
if not (i in [0, j] and j == cols - 1):
|
||||
raise ValueError("Parse error, did not read all lines.")
|
||||
else:
|
||||
if not (i in [0, j] and j == cols):
|
||||
raise ValueError("Parse error, did not read all lines.")
|
||||
|
||||
elif format == self.FORMAT_COORDINATE:
|
||||
# Read sparse COOrdinate format
|
||||
|
||||
if entries == 0:
|
||||
# empty matrix
|
||||
return coo_matrix((rows, cols), dtype=dtype)
|
||||
|
||||
I = zeros(entries, dtype='intc')
|
||||
J = zeros(entries, dtype='intc')
|
||||
if is_pattern:
|
||||
V = ones(entries, dtype='int8')
|
||||
elif is_integer:
|
||||
V = zeros(entries, dtype='intp')
|
||||
elif is_unsigned_integer:
|
||||
V = zeros(entries, dtype='uint64')
|
||||
elif is_complex:
|
||||
V = zeros(entries, dtype='complex')
|
||||
else:
|
||||
V = zeros(entries, dtype='float')
|
||||
|
||||
entry_number = 0
|
||||
for line in stream:
|
||||
# line.startswith('%')
|
||||
if not line or line[0] in ['%', 37] or not line.strip():
|
||||
continue
|
||||
|
||||
if entry_number+1 > entries:
|
||||
raise ValueError("'entries' in header is smaller than "
|
||||
"number of entries")
|
||||
l = line.split()
|
||||
I[entry_number], J[entry_number] = map(int, l[:2])
|
||||
|
||||
if not is_pattern:
|
||||
if is_integer:
|
||||
V[entry_number] = int(l[2])
|
||||
elif is_unsigned_integer:
|
||||
V[entry_number] = int(l[2])
|
||||
elif is_complex:
|
||||
V[entry_number] = complex(*map(float, l[2:]))
|
||||
else:
|
||||
V[entry_number] = float(l[2])
|
||||
entry_number += 1
|
||||
if entry_number < entries:
|
||||
raise ValueError("'entries' in header is larger than "
|
||||
"number of entries")
|
||||
|
||||
I -= 1 # adjust indices (base 1 -> base 0)
|
||||
J -= 1
|
||||
|
||||
if has_symmetry:
|
||||
mask = (I != J) # off diagonal mask
|
||||
od_I = I[mask]
|
||||
od_J = J[mask]
|
||||
od_V = V[mask]
|
||||
|
||||
I = concatenate((I, od_J))
|
||||
J = concatenate((J, od_I))
|
||||
|
||||
if is_skew:
|
||||
od_V *= -1
|
||||
elif is_herm:
|
||||
od_V = od_V.conjugate()
|
||||
|
||||
V = concatenate((V, od_V))
|
||||
|
||||
a = coo_matrix((V, (I, J)), shape=(rows, cols), dtype=dtype)
|
||||
else:
|
||||
raise NotImplementedError(format)
|
||||
|
||||
return a
|
||||
|
||||
# ------------------------------------------------------------------------
|
||||
def _write(self, stream, a, comment='', field=None, precision=None,
|
||||
symmetry=None):
|
||||
if isinstance(a, list) or isinstance(a, ndarray) or \
|
||||
isinstance(a, tuple) or hasattr(a, '__array__'):
|
||||
rep = self.FORMAT_ARRAY
|
||||
a = asarray(a)
|
||||
if len(a.shape) != 2:
|
||||
raise ValueError('Expected 2 dimensional array')
|
||||
rows, cols = a.shape
|
||||
|
||||
if field is not None:
|
||||
|
||||
if field == self.FIELD_INTEGER:
|
||||
if not can_cast(a.dtype, 'intp'):
|
||||
raise OverflowError("mmwrite does not support integer "
|
||||
"dtypes larger than native 'intp'.")
|
||||
a = a.astype('intp')
|
||||
elif field == self.FIELD_REAL:
|
||||
if a.dtype.char not in 'fd':
|
||||
a = a.astype('d')
|
||||
elif field == self.FIELD_COMPLEX:
|
||||
if a.dtype.char not in 'FD':
|
||||
a = a.astype('D')
|
||||
|
||||
else:
|
||||
if not issparse(a):
|
||||
raise ValueError('unknown matrix type: %s' % type(a))
|
||||
|
||||
rep = 'coordinate'
|
||||
rows, cols = a.shape
|
||||
|
||||
typecode = a.dtype.char
|
||||
|
||||
if precision is None:
|
||||
if typecode in 'fF':
|
||||
precision = 8
|
||||
else:
|
||||
precision = 16
|
||||
if field is None:
|
||||
kind = a.dtype.kind
|
||||
if kind == 'i':
|
||||
if not can_cast(a.dtype, 'intp'):
|
||||
raise OverflowError("mmwrite does not support integer "
|
||||
"dtypes larger than native 'intp'.")
|
||||
field = 'integer'
|
||||
elif kind == 'f':
|
||||
field = 'real'
|
||||
elif kind == 'c':
|
||||
field = 'complex'
|
||||
elif kind == 'u':
|
||||
field = 'unsigned-integer'
|
||||
else:
|
||||
raise TypeError('unexpected dtype kind ' + kind)
|
||||
|
||||
if symmetry is None:
|
||||
symmetry = self._get_symmetry(a)
|
||||
|
||||
# validate rep, field, and symmetry
|
||||
self.__class__._validate_format(rep)
|
||||
self.__class__._validate_field(field)
|
||||
self.__class__._validate_symmetry(symmetry)
|
||||
|
||||
# write initial header line
|
||||
data = f'%%MatrixMarket matrix {rep} {field} {symmetry}\n'
|
||||
stream.write(data.encode('latin1'))
|
||||
|
||||
# write comments
|
||||
for line in comment.split('\n'):
|
||||
data = '%%%s\n' % (line)
|
||||
stream.write(data.encode('latin1'))
|
||||
|
||||
template = self._field_template(field, precision)
|
||||
# write dense format
|
||||
if rep == self.FORMAT_ARRAY:
|
||||
# write shape spec
|
||||
data = '%i %i\n' % (rows, cols)
|
||||
stream.write(data.encode('latin1'))
|
||||
|
||||
if field in (self.FIELD_INTEGER, self.FIELD_REAL,
|
||||
self.FIELD_UNSIGNED):
|
||||
if symmetry == self.SYMMETRY_GENERAL:
|
||||
for j in range(cols):
|
||||
for i in range(rows):
|
||||
data = template % a[i, j]
|
||||
stream.write(data.encode('latin1'))
|
||||
|
||||
elif symmetry == self.SYMMETRY_SKEW_SYMMETRIC:
|
||||
for j in range(cols):
|
||||
for i in range(j + 1, rows):
|
||||
data = template % a[i, j]
|
||||
stream.write(data.encode('latin1'))
|
||||
|
||||
else:
|
||||
for j in range(cols):
|
||||
for i in range(j, rows):
|
||||
data = template % a[i, j]
|
||||
stream.write(data.encode('latin1'))
|
||||
|
||||
elif field == self.FIELD_COMPLEX:
|
||||
|
||||
if symmetry == self.SYMMETRY_GENERAL:
|
||||
for j in range(cols):
|
||||
for i in range(rows):
|
||||
aij = a[i, j]
|
||||
data = template % (real(aij), imag(aij))
|
||||
stream.write(data.encode('latin1'))
|
||||
else:
|
||||
for j in range(cols):
|
||||
for i in range(j, rows):
|
||||
aij = a[i, j]
|
||||
data = template % (real(aij), imag(aij))
|
||||
stream.write(data.encode('latin1'))
|
||||
|
||||
elif field == self.FIELD_PATTERN:
|
||||
raise ValueError('pattern type inconsisted with dense format')
|
||||
|
||||
else:
|
||||
raise TypeError('Unknown field type %s' % field)
|
||||
|
||||
# write sparse format
|
||||
else:
|
||||
coo = a.tocoo() # convert to COOrdinate format
|
||||
|
||||
# if symmetry format used, remove values above main diagonal
|
||||
if symmetry != self.SYMMETRY_GENERAL:
|
||||
lower_triangle_mask = coo.row >= coo.col
|
||||
coo = coo_matrix((coo.data[lower_triangle_mask],
|
||||
(coo.row[lower_triangle_mask],
|
||||
coo.col[lower_triangle_mask])),
|
||||
shape=coo.shape)
|
||||
|
||||
# write shape spec
|
||||
data = '%i %i %i\n' % (rows, cols, coo.nnz)
|
||||
stream.write(data.encode('latin1'))
|
||||
|
||||
template = self._field_template(field, precision-1)
|
||||
|
||||
if field == self.FIELD_PATTERN:
|
||||
for r, c in zip(coo.row+1, coo.col+1):
|
||||
data = "%i %i\n" % (r, c)
|
||||
stream.write(data.encode('latin1'))
|
||||
elif field in (self.FIELD_INTEGER, self.FIELD_REAL,
|
||||
self.FIELD_UNSIGNED):
|
||||
for r, c, d in zip(coo.row+1, coo.col+1, coo.data):
|
||||
data = ("%i %i " % (r, c)) + (template % d)
|
||||
stream.write(data.encode('latin1'))
|
||||
elif field == self.FIELD_COMPLEX:
|
||||
for r, c, d in zip(coo.row+1, coo.col+1, coo.data):
|
||||
data = ("%i %i " % (r, c)) + (template % (d.real, d.imag))
|
||||
stream.write(data.encode('latin1'))
|
||||
else:
|
||||
raise TypeError('Unknown field type %s' % field)
|
||||
|
||||
|
||||
def _is_fromfile_compatible(stream):
|
||||
"""
|
||||
Check whether `stream` is compatible with numpy.fromfile.
|
||||
|
||||
Passing a gzipped file object to ``fromfile/fromstring`` doesn't work with
|
||||
Python 3.
|
||||
"""
|
||||
|
||||
bad_cls = []
|
||||
try:
|
||||
import gzip
|
||||
bad_cls.append(gzip.GzipFile)
|
||||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
import bz2
|
||||
bad_cls.append(bz2.BZ2File)
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
bad_cls = tuple(bad_cls)
|
||||
return not isinstance(stream, bad_cls)
|
1095
venv/lib/python3.12/site-packages/scipy/io/_netcdf.py
Normal file
1095
venv/lib/python3.12/site-packages/scipy/io/_netcdf.py
Normal file
File diff suppressed because it is too large
Load Diff
Binary file not shown.
28
venv/lib/python3.12/site-packages/scipy/io/arff/__init__.py
Normal file
28
venv/lib/python3.12/site-packages/scipy/io/arff/__init__.py
Normal file
@ -0,0 +1,28 @@
|
||||
"""
|
||||
Module to read ARFF files
|
||||
=========================
|
||||
ARFF is the standard data format for WEKA.
|
||||
It is a text file format which support numerical, string and data values.
|
||||
The format can also represent missing data and sparse data.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The ARFF support in ``scipy.io`` provides file reading functionality only.
|
||||
For more extensive ARFF functionality, see `liac-arff
|
||||
<https://github.com/renatopp/liac-arff>`_.
|
||||
|
||||
See the `WEKA website <http://weka.wikispaces.com/ARFF>`_
|
||||
for more details about the ARFF format and available datasets.
|
||||
|
||||
"""
|
||||
from ._arffread import *
|
||||
from . import _arffread
|
||||
|
||||
# Deprecated namespaces, to be removed in v2.0.0
|
||||
from .import arffread
|
||||
|
||||
__all__ = _arffread.__all__ + ['arffread']
|
||||
|
||||
from scipy._lib._testutils import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
907
venv/lib/python3.12/site-packages/scipy/io/arff/_arffread.py
Normal file
907
venv/lib/python3.12/site-packages/scipy/io/arff/_arffread.py
Normal file
@ -0,0 +1,907 @@
|
||||
# Last Change: Mon Aug 20 08:00 PM 2007 J
|
||||
import re
|
||||
import datetime
|
||||
|
||||
import numpy as np
|
||||
|
||||
import csv
|
||||
import ctypes
|
||||
|
||||
"""A module to read arff files."""
|
||||
|
||||
__all__ = ['MetaData', 'loadarff', 'ArffError', 'ParseArffError']
|
||||
|
||||
# An Arff file is basically two parts:
|
||||
# - header
|
||||
# - data
|
||||
#
|
||||
# A header has each of its components starting by @META where META is one of
|
||||
# the keyword (attribute of relation, for now).
|
||||
|
||||
# TODO:
|
||||
# - both integer and reals are treated as numeric -> the integer info
|
||||
# is lost!
|
||||
# - Replace ValueError by ParseError or something
|
||||
|
||||
# We know can handle the following:
|
||||
# - numeric and nominal attributes
|
||||
# - missing values for numeric attributes
|
||||
|
||||
r_meta = re.compile(r'^\s*@')
|
||||
# Match a comment
|
||||
r_comment = re.compile(r'^%')
|
||||
# Match an empty line
|
||||
r_empty = re.compile(r'^\s+$')
|
||||
# Match a header line, that is a line which starts by @ + a word
|
||||
r_headerline = re.compile(r'^\s*@\S*')
|
||||
r_datameta = re.compile(r'^@[Dd][Aa][Tt][Aa]')
|
||||
r_relation = re.compile(r'^@[Rr][Ee][Ll][Aa][Tt][Ii][Oo][Nn]\s*(\S*)')
|
||||
r_attribute = re.compile(r'^\s*@[Aa][Tt][Tt][Rr][Ii][Bb][Uu][Tt][Ee]\s*(..*$)')
|
||||
|
||||
r_nominal = re.compile(r'{(.+)}')
|
||||
r_date = re.compile(r"[Dd][Aa][Tt][Ee]\s+[\"']?(.+?)[\"']?$")
|
||||
|
||||
# To get attributes name enclosed with ''
|
||||
r_comattrval = re.compile(r"'(..+)'\s+(..+$)")
|
||||
# To get normal attributes
|
||||
r_wcomattrval = re.compile(r"(\S+)\s+(..+$)")
|
||||
|
||||
# ------------------------
|
||||
# Module defined exception
|
||||
# ------------------------
|
||||
|
||||
|
||||
class ArffError(OSError):
|
||||
pass
|
||||
|
||||
|
||||
class ParseArffError(ArffError):
|
||||
pass
|
||||
|
||||
|
||||
# ----------
|
||||
# Attributes
|
||||
# ----------
|
||||
class Attribute:
|
||||
|
||||
type_name = None
|
||||
|
||||
def __init__(self, name):
|
||||
self.name = name
|
||||
self.range = None
|
||||
self.dtype = np.object_
|
||||
|
||||
@classmethod
|
||||
def parse_attribute(cls, name, attr_string):
|
||||
"""
|
||||
Parse the attribute line if it knows how. Returns the parsed
|
||||
attribute, or None.
|
||||
"""
|
||||
return None
|
||||
|
||||
def parse_data(self, data_str):
|
||||
"""
|
||||
Parse a value of this type.
|
||||
"""
|
||||
return None
|
||||
|
||||
def __str__(self):
|
||||
"""
|
||||
Parse a value of this type.
|
||||
"""
|
||||
return self.name + ',' + self.type_name
|
||||
|
||||
|
||||
class NominalAttribute(Attribute):
|
||||
|
||||
type_name = 'nominal'
|
||||
|
||||
def __init__(self, name, values):
|
||||
super().__init__(name)
|
||||
self.values = values
|
||||
self.range = values
|
||||
self.dtype = (np.bytes_, max(len(i) for i in values))
|
||||
|
||||
@staticmethod
|
||||
def _get_nom_val(atrv):
|
||||
"""Given a string containing a nominal type, returns a tuple of the
|
||||
possible values.
|
||||
|
||||
A nominal type is defined as something framed between braces ({}).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
atrv : str
|
||||
Nominal type definition
|
||||
|
||||
Returns
|
||||
-------
|
||||
poss_vals : tuple
|
||||
possible values
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.io.arff._arffread import NominalAttribute
|
||||
>>> NominalAttribute._get_nom_val("{floup, bouga, fl, ratata}")
|
||||
('floup', 'bouga', 'fl', 'ratata')
|
||||
"""
|
||||
m = r_nominal.match(atrv)
|
||||
if m:
|
||||
attrs, _ = split_data_line(m.group(1))
|
||||
return tuple(attrs)
|
||||
else:
|
||||
raise ValueError("This does not look like a nominal string")
|
||||
|
||||
@classmethod
|
||||
def parse_attribute(cls, name, attr_string):
|
||||
"""
|
||||
Parse the attribute line if it knows how. Returns the parsed
|
||||
attribute, or None.
|
||||
|
||||
For nominal attributes, the attribute string would be like '{<attr_1>,
|
||||
<attr2>, <attr_3>}'.
|
||||
"""
|
||||
if attr_string[0] == '{':
|
||||
values = cls._get_nom_val(attr_string)
|
||||
return cls(name, values)
|
||||
else:
|
||||
return None
|
||||
|
||||
def parse_data(self, data_str):
|
||||
"""
|
||||
Parse a value of this type.
|
||||
"""
|
||||
if data_str in self.values:
|
||||
return data_str
|
||||
elif data_str == '?':
|
||||
return data_str
|
||||
else:
|
||||
raise ValueError(f"{str(data_str)} value not in {str(self.values)}")
|
||||
|
||||
def __str__(self):
|
||||
msg = self.name + ",{"
|
||||
for i in range(len(self.values)-1):
|
||||
msg += self.values[i] + ","
|
||||
msg += self.values[-1]
|
||||
msg += "}"
|
||||
return msg
|
||||
|
||||
|
||||
class NumericAttribute(Attribute):
|
||||
|
||||
def __init__(self, name):
|
||||
super().__init__(name)
|
||||
self.type_name = 'numeric'
|
||||
self.dtype = np.float64
|
||||
|
||||
@classmethod
|
||||
def parse_attribute(cls, name, attr_string):
|
||||
"""
|
||||
Parse the attribute line if it knows how. Returns the parsed
|
||||
attribute, or None.
|
||||
|
||||
For numeric attributes, the attribute string would be like
|
||||
'numeric' or 'int' or 'real'.
|
||||
"""
|
||||
|
||||
attr_string = attr_string.lower().strip()
|
||||
|
||||
if (attr_string[:len('numeric')] == 'numeric' or
|
||||
attr_string[:len('int')] == 'int' or
|
||||
attr_string[:len('real')] == 'real'):
|
||||
return cls(name)
|
||||
else:
|
||||
return None
|
||||
|
||||
def parse_data(self, data_str):
|
||||
"""
|
||||
Parse a value of this type.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data_str : str
|
||||
string to convert
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : float
|
||||
where float can be nan
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.io.arff._arffread import NumericAttribute
|
||||
>>> atr = NumericAttribute('atr')
|
||||
>>> atr.parse_data('1')
|
||||
1.0
|
||||
>>> atr.parse_data('1\\n')
|
||||
1.0
|
||||
>>> atr.parse_data('?\\n')
|
||||
nan
|
||||
"""
|
||||
if '?' in data_str:
|
||||
return np.nan
|
||||
else:
|
||||
return float(data_str)
|
||||
|
||||
def _basic_stats(self, data):
|
||||
nbfac = data.size * 1. / (data.size - 1)
|
||||
return (np.nanmin(data), np.nanmax(data),
|
||||
np.mean(data), np.std(data) * nbfac)
|
||||
|
||||
|
||||
class StringAttribute(Attribute):
|
||||
|
||||
def __init__(self, name):
|
||||
super().__init__(name)
|
||||
self.type_name = 'string'
|
||||
|
||||
@classmethod
|
||||
def parse_attribute(cls, name, attr_string):
|
||||
"""
|
||||
Parse the attribute line if it knows how. Returns the parsed
|
||||
attribute, or None.
|
||||
|
||||
For string attributes, the attribute string would be like
|
||||
'string'.
|
||||
"""
|
||||
|
||||
attr_string = attr_string.lower().strip()
|
||||
|
||||
if attr_string[:len('string')] == 'string':
|
||||
return cls(name)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class DateAttribute(Attribute):
|
||||
|
||||
def __init__(self, name, date_format, datetime_unit):
|
||||
super().__init__(name)
|
||||
self.date_format = date_format
|
||||
self.datetime_unit = datetime_unit
|
||||
self.type_name = 'date'
|
||||
self.range = date_format
|
||||
self.dtype = np.datetime64(0, self.datetime_unit)
|
||||
|
||||
@staticmethod
|
||||
def _get_date_format(atrv):
|
||||
m = r_date.match(atrv)
|
||||
if m:
|
||||
pattern = m.group(1).strip()
|
||||
# convert time pattern from Java's SimpleDateFormat to C's format
|
||||
datetime_unit = None
|
||||
if "yyyy" in pattern:
|
||||
pattern = pattern.replace("yyyy", "%Y")
|
||||
datetime_unit = "Y"
|
||||
elif "yy":
|
||||
pattern = pattern.replace("yy", "%y")
|
||||
datetime_unit = "Y"
|
||||
if "MM" in pattern:
|
||||
pattern = pattern.replace("MM", "%m")
|
||||
datetime_unit = "M"
|
||||
if "dd" in pattern:
|
||||
pattern = pattern.replace("dd", "%d")
|
||||
datetime_unit = "D"
|
||||
if "HH" in pattern:
|
||||
pattern = pattern.replace("HH", "%H")
|
||||
datetime_unit = "h"
|
||||
if "mm" in pattern:
|
||||
pattern = pattern.replace("mm", "%M")
|
||||
datetime_unit = "m"
|
||||
if "ss" in pattern:
|
||||
pattern = pattern.replace("ss", "%S")
|
||||
datetime_unit = "s"
|
||||
if "z" in pattern or "Z" in pattern:
|
||||
raise ValueError("Date type attributes with time zone not "
|
||||
"supported, yet")
|
||||
|
||||
if datetime_unit is None:
|
||||
raise ValueError("Invalid or unsupported date format")
|
||||
|
||||
return pattern, datetime_unit
|
||||
else:
|
||||
raise ValueError("Invalid or no date format")
|
||||
|
||||
@classmethod
|
||||
def parse_attribute(cls, name, attr_string):
|
||||
"""
|
||||
Parse the attribute line if it knows how. Returns the parsed
|
||||
attribute, or None.
|
||||
|
||||
For date attributes, the attribute string would be like
|
||||
'date <format>'.
|
||||
"""
|
||||
|
||||
attr_string_lower = attr_string.lower().strip()
|
||||
|
||||
if attr_string_lower[:len('date')] == 'date':
|
||||
date_format, datetime_unit = cls._get_date_format(attr_string)
|
||||
return cls(name, date_format, datetime_unit)
|
||||
else:
|
||||
return None
|
||||
|
||||
def parse_data(self, data_str):
|
||||
"""
|
||||
Parse a value of this type.
|
||||
"""
|
||||
date_str = data_str.strip().strip("'").strip('"')
|
||||
if date_str == '?':
|
||||
return np.datetime64('NaT', self.datetime_unit)
|
||||
else:
|
||||
dt = datetime.datetime.strptime(date_str, self.date_format)
|
||||
return np.datetime64(dt).astype(
|
||||
"datetime64[%s]" % self.datetime_unit)
|
||||
|
||||
def __str__(self):
|
||||
return super().__str__() + ',' + self.date_format
|
||||
|
||||
|
||||
class RelationalAttribute(Attribute):
|
||||
|
||||
def __init__(self, name):
|
||||
super().__init__(name)
|
||||
self.type_name = 'relational'
|
||||
self.dtype = np.object_
|
||||
self.attributes = []
|
||||
self.dialect = None
|
||||
|
||||
@classmethod
|
||||
def parse_attribute(cls, name, attr_string):
|
||||
"""
|
||||
Parse the attribute line if it knows how. Returns the parsed
|
||||
attribute, or None.
|
||||
|
||||
For date attributes, the attribute string would be like
|
||||
'date <format>'.
|
||||
"""
|
||||
|
||||
attr_string_lower = attr_string.lower().strip()
|
||||
|
||||
if attr_string_lower[:len('relational')] == 'relational':
|
||||
return cls(name)
|
||||
else:
|
||||
return None
|
||||
|
||||
def parse_data(self, data_str):
|
||||
# Copy-pasted
|
||||
elems = list(range(len(self.attributes)))
|
||||
|
||||
escaped_string = data_str.encode().decode("unicode-escape")
|
||||
|
||||
row_tuples = []
|
||||
|
||||
for raw in escaped_string.split("\n"):
|
||||
row, self.dialect = split_data_line(raw, self.dialect)
|
||||
|
||||
row_tuples.append(tuple(
|
||||
[self.attributes[i].parse_data(row[i]) for i in elems]))
|
||||
|
||||
return np.array(row_tuples,
|
||||
[(a.name, a.dtype) for a in self.attributes])
|
||||
|
||||
def __str__(self):
|
||||
return (super().__str__() + '\n\t' +
|
||||
'\n\t'.join(str(a) for a in self.attributes))
|
||||
|
||||
|
||||
# -----------------
|
||||
# Various utilities
|
||||
# -----------------
|
||||
def to_attribute(name, attr_string):
|
||||
attr_classes = (NominalAttribute, NumericAttribute, DateAttribute,
|
||||
StringAttribute, RelationalAttribute)
|
||||
|
||||
for cls in attr_classes:
|
||||
attr = cls.parse_attribute(name, attr_string)
|
||||
if attr is not None:
|
||||
return attr
|
||||
|
||||
raise ParseArffError("unknown attribute %s" % attr_string)
|
||||
|
||||
|
||||
def csv_sniffer_has_bug_last_field():
|
||||
"""
|
||||
Checks if the bug https://bugs.python.org/issue30157 is unpatched.
|
||||
"""
|
||||
|
||||
# We only compute this once.
|
||||
has_bug = getattr(csv_sniffer_has_bug_last_field, "has_bug", None)
|
||||
|
||||
if has_bug is None:
|
||||
dialect = csv.Sniffer().sniff("3, 'a'")
|
||||
csv_sniffer_has_bug_last_field.has_bug = dialect.quotechar != "'"
|
||||
has_bug = csv_sniffer_has_bug_last_field.has_bug
|
||||
|
||||
return has_bug
|
||||
|
||||
|
||||
def workaround_csv_sniffer_bug_last_field(sniff_line, dialect, delimiters):
|
||||
"""
|
||||
Workaround for the bug https://bugs.python.org/issue30157 if is unpatched.
|
||||
"""
|
||||
if csv_sniffer_has_bug_last_field():
|
||||
# Reuses code from the csv module
|
||||
right_regex = r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)' # noqa: E501
|
||||
|
||||
for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?", # noqa: E501
|
||||
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # .*?", # noqa: E501
|
||||
right_regex, # ,".*?"
|
||||
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) # noqa: E501
|
||||
regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
|
||||
matches = regexp.findall(sniff_line)
|
||||
if matches:
|
||||
break
|
||||
|
||||
# If it does not match the expression that was bugged,
|
||||
# then this bug does not apply
|
||||
if restr != right_regex:
|
||||
return
|
||||
|
||||
groupindex = regexp.groupindex
|
||||
|
||||
# There is only one end of the string
|
||||
assert len(matches) == 1
|
||||
m = matches[0]
|
||||
|
||||
n = groupindex['quote'] - 1
|
||||
quote = m[n]
|
||||
|
||||
n = groupindex['delim'] - 1
|
||||
delim = m[n]
|
||||
|
||||
n = groupindex['space'] - 1
|
||||
space = bool(m[n])
|
||||
|
||||
dq_regexp = re.compile(
|
||||
rf"(({re.escape(delim)})|^)\W*{quote}[^{re.escape(delim)}\n]*{quote}[^{re.escape(delim)}\n]*{quote}\W*(({re.escape(delim)})|$)", re.MULTILINE # noqa: E501
|
||||
)
|
||||
|
||||
doublequote = bool(dq_regexp.search(sniff_line))
|
||||
|
||||
dialect.quotechar = quote
|
||||
if delim in delimiters:
|
||||
dialect.delimiter = delim
|
||||
dialect.doublequote = doublequote
|
||||
dialect.skipinitialspace = space
|
||||
|
||||
|
||||
def split_data_line(line, dialect=None):
|
||||
delimiters = ",\t"
|
||||
|
||||
# This can not be done in a per reader basis, and relational fields
|
||||
# can be HUGE
|
||||
csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2))
|
||||
|
||||
# Remove the line end if any
|
||||
if line[-1] == '\n':
|
||||
line = line[:-1]
|
||||
|
||||
# Remove potential trailing whitespace
|
||||
line = line.strip()
|
||||
|
||||
sniff_line = line
|
||||
|
||||
# Add a delimiter if none is present, so that the csv.Sniffer
|
||||
# does not complain for a single-field CSV.
|
||||
if not any(d in line for d in delimiters):
|
||||
sniff_line += ","
|
||||
|
||||
if dialect is None:
|
||||
dialect = csv.Sniffer().sniff(sniff_line, delimiters=delimiters)
|
||||
workaround_csv_sniffer_bug_last_field(sniff_line=sniff_line,
|
||||
dialect=dialect,
|
||||
delimiters=delimiters)
|
||||
|
||||
row = next(csv.reader([line], dialect))
|
||||
|
||||
return row, dialect
|
||||
|
||||
|
||||
# --------------
|
||||
# Parsing header
|
||||
# --------------
|
||||
def tokenize_attribute(iterable, attribute):
|
||||
"""Parse a raw string in header (e.g., starts by @attribute).
|
||||
|
||||
Given a raw string attribute, try to get the name and type of the
|
||||
attribute. Constraints:
|
||||
|
||||
* The first line must start with @attribute (case insensitive, and
|
||||
space like characters before @attribute are allowed)
|
||||
* Works also if the attribute is spread on multilines.
|
||||
* Works if empty lines or comments are in between
|
||||
|
||||
Parameters
|
||||
----------
|
||||
attribute : str
|
||||
the attribute string.
|
||||
|
||||
Returns
|
||||
-------
|
||||
name : str
|
||||
name of the attribute
|
||||
value : str
|
||||
value of the attribute
|
||||
next : str
|
||||
next line to be parsed
|
||||
|
||||
Examples
|
||||
--------
|
||||
If attribute is a string defined in python as r"floupi real", will
|
||||
return floupi as name, and real as value.
|
||||
|
||||
>>> from scipy.io.arff._arffread import tokenize_attribute
|
||||
>>> iterable = iter([0] * 10) # dummy iterator
|
||||
>>> tokenize_attribute(iterable, r"@attribute floupi real")
|
||||
('floupi', 'real', 0)
|
||||
|
||||
If attribute is r"'floupi 2' real", will return 'floupi 2' as name,
|
||||
and real as value.
|
||||
|
||||
>>> tokenize_attribute(iterable, r" @attribute 'floupi 2' real ")
|
||||
('floupi 2', 'real', 0)
|
||||
|
||||
"""
|
||||
sattr = attribute.strip()
|
||||
mattr = r_attribute.match(sattr)
|
||||
if mattr:
|
||||
# atrv is everything after @attribute
|
||||
atrv = mattr.group(1)
|
||||
if r_comattrval.match(atrv):
|
||||
name, type = tokenize_single_comma(atrv)
|
||||
next_item = next(iterable)
|
||||
elif r_wcomattrval.match(atrv):
|
||||
name, type = tokenize_single_wcomma(atrv)
|
||||
next_item = next(iterable)
|
||||
else:
|
||||
# Not sure we should support this, as it does not seem supported by
|
||||
# weka.
|
||||
raise ValueError("multi line not supported yet")
|
||||
else:
|
||||
raise ValueError("First line unparsable: %s" % sattr)
|
||||
|
||||
attribute = to_attribute(name, type)
|
||||
|
||||
if type.lower() == 'relational':
|
||||
next_item = read_relational_attribute(iterable, attribute, next_item)
|
||||
# raise ValueError("relational attributes not supported yet")
|
||||
|
||||
return attribute, next_item
|
||||
|
||||
|
||||
def tokenize_single_comma(val):
|
||||
# XXX we match twice the same string (here and at the caller level). It is
|
||||
# stupid, but it is easier for now...
|
||||
m = r_comattrval.match(val)
|
||||
if m:
|
||||
try:
|
||||
name = m.group(1).strip()
|
||||
type = m.group(2).strip()
|
||||
except IndexError as e:
|
||||
raise ValueError("Error while tokenizing attribute") from e
|
||||
else:
|
||||
raise ValueError("Error while tokenizing single %s" % val)
|
||||
return name, type
|
||||
|
||||
|
||||
def tokenize_single_wcomma(val):
|
||||
# XXX we match twice the same string (here and at the caller level). It is
|
||||
# stupid, but it is easier for now...
|
||||
m = r_wcomattrval.match(val)
|
||||
if m:
|
||||
try:
|
||||
name = m.group(1).strip()
|
||||
type = m.group(2).strip()
|
||||
except IndexError as e:
|
||||
raise ValueError("Error while tokenizing attribute") from e
|
||||
else:
|
||||
raise ValueError("Error while tokenizing single %s" % val)
|
||||
return name, type
|
||||
|
||||
|
||||
def read_relational_attribute(ofile, relational_attribute, i):
|
||||
"""Read the nested attributes of a relational attribute"""
|
||||
|
||||
r_end_relational = re.compile(r'^@[Ee][Nn][Dd]\s*' +
|
||||
relational_attribute.name + r'\s*$')
|
||||
|
||||
while not r_end_relational.match(i):
|
||||
m = r_headerline.match(i)
|
||||
if m:
|
||||
isattr = r_attribute.match(i)
|
||||
if isattr:
|
||||
attr, i = tokenize_attribute(ofile, i)
|
||||
relational_attribute.attributes.append(attr)
|
||||
else:
|
||||
raise ValueError("Error parsing line %s" % i)
|
||||
else:
|
||||
i = next(ofile)
|
||||
|
||||
i = next(ofile)
|
||||
return i
|
||||
|
||||
|
||||
def read_header(ofile):
|
||||
"""Read the header of the iterable ofile."""
|
||||
i = next(ofile)
|
||||
|
||||
# Pass first comments
|
||||
while r_comment.match(i):
|
||||
i = next(ofile)
|
||||
|
||||
# Header is everything up to DATA attribute ?
|
||||
relation = None
|
||||
attributes = []
|
||||
while not r_datameta.match(i):
|
||||
m = r_headerline.match(i)
|
||||
if m:
|
||||
isattr = r_attribute.match(i)
|
||||
if isattr:
|
||||
attr, i = tokenize_attribute(ofile, i)
|
||||
attributes.append(attr)
|
||||
else:
|
||||
isrel = r_relation.match(i)
|
||||
if isrel:
|
||||
relation = isrel.group(1)
|
||||
else:
|
||||
raise ValueError("Error parsing line %s" % i)
|
||||
i = next(ofile)
|
||||
else:
|
||||
i = next(ofile)
|
||||
|
||||
return relation, attributes
|
||||
|
||||
|
||||
class MetaData:
|
||||
"""Small container to keep useful information on a ARFF dataset.
|
||||
|
||||
Knows about attributes names and types.
|
||||
|
||||
Examples
|
||||
--------
|
||||
::
|
||||
|
||||
data, meta = loadarff('iris.arff')
|
||||
# This will print the attributes names of the iris.arff dataset
|
||||
for i in meta:
|
||||
print(i)
|
||||
# This works too
|
||||
meta.names()
|
||||
# Getting attribute type
|
||||
types = meta.types()
|
||||
|
||||
Methods
|
||||
-------
|
||||
names
|
||||
types
|
||||
|
||||
Notes
|
||||
-----
|
||||
Also maintains the list of attributes in order, i.e., doing for i in
|
||||
meta, where meta is an instance of MetaData, will return the
|
||||
different attribute names in the order they were defined.
|
||||
"""
|
||||
def __init__(self, rel, attr):
|
||||
self.name = rel
|
||||
self._attributes = {a.name: a for a in attr}
|
||||
|
||||
def __repr__(self):
|
||||
msg = ""
|
||||
msg += "Dataset: %s\n" % self.name
|
||||
for i in self._attributes:
|
||||
msg += f"\t{i}'s type is {self._attributes[i].type_name}"
|
||||
if self._attributes[i].range:
|
||||
msg += ", range is %s" % str(self._attributes[i].range)
|
||||
msg += '\n'
|
||||
return msg
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self._attributes)
|
||||
|
||||
def __getitem__(self, key):
|
||||
attr = self._attributes[key]
|
||||
|
||||
return (attr.type_name, attr.range)
|
||||
|
||||
def names(self):
|
||||
"""Return the list of attribute names.
|
||||
|
||||
Returns
|
||||
-------
|
||||
attrnames : list of str
|
||||
The attribute names.
|
||||
"""
|
||||
return list(self._attributes)
|
||||
|
||||
def types(self):
|
||||
"""Return the list of attribute types.
|
||||
|
||||
Returns
|
||||
-------
|
||||
attr_types : list of str
|
||||
The attribute types.
|
||||
"""
|
||||
attr_types = [self._attributes[name].type_name
|
||||
for name in self._attributes]
|
||||
return attr_types
|
||||
|
||||
|
||||
def loadarff(f):
|
||||
"""
|
||||
Read an arff file.
|
||||
|
||||
The data is returned as a record array, which can be accessed much like
|
||||
a dictionary of NumPy arrays. For example, if one of the attributes is
|
||||
called 'pressure', then its first 10 data points can be accessed from the
|
||||
``data`` record array like so: ``data['pressure'][0:10]``
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
f : file-like or str
|
||||
File-like object to read from, or filename to open.
|
||||
|
||||
Returns
|
||||
-------
|
||||
data : record array
|
||||
The data of the arff file, accessible by attribute names.
|
||||
meta : `MetaData`
|
||||
Contains information about the arff file such as name and
|
||||
type of attributes, the relation (name of the dataset), etc.
|
||||
|
||||
Raises
|
||||
------
|
||||
ParseArffError
|
||||
This is raised if the given file is not ARFF-formatted.
|
||||
NotImplementedError
|
||||
The ARFF file has an attribute which is not supported yet.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
This function should be able to read most arff files. Not
|
||||
implemented functionality include:
|
||||
|
||||
* date type attributes
|
||||
* string type attributes
|
||||
|
||||
It can read files with numeric and nominal attributes. It cannot read
|
||||
files with sparse data ({} in the file). However, this function can
|
||||
read files with missing data (? in the file), representing the data
|
||||
points as NaNs.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.io import arff
|
||||
>>> from io import StringIO
|
||||
>>> content = \"\"\"
|
||||
... @relation foo
|
||||
... @attribute width numeric
|
||||
... @attribute height numeric
|
||||
... @attribute color {red,green,blue,yellow,black}
|
||||
... @data
|
||||
... 5.0,3.25,blue
|
||||
... 4.5,3.75,green
|
||||
... 3.0,4.00,red
|
||||
... \"\"\"
|
||||
>>> f = StringIO(content)
|
||||
>>> data, meta = arff.loadarff(f)
|
||||
>>> data
|
||||
array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],
|
||||
dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
|
||||
>>> meta
|
||||
Dataset: foo
|
||||
\twidth's type is numeric
|
||||
\theight's type is numeric
|
||||
\tcolor's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')
|
||||
|
||||
"""
|
||||
if hasattr(f, 'read'):
|
||||
ofile = f
|
||||
else:
|
||||
ofile = open(f)
|
||||
try:
|
||||
return _loadarff(ofile)
|
||||
finally:
|
||||
if ofile is not f: # only close what we opened
|
||||
ofile.close()
|
||||
|
||||
|
||||
def _loadarff(ofile):
|
||||
# Parse the header file
|
||||
try:
|
||||
rel, attr = read_header(ofile)
|
||||
except ValueError as e:
|
||||
msg = "Error while parsing header, error was: " + str(e)
|
||||
raise ParseArffError(msg) from e
|
||||
|
||||
# Check whether we have a string attribute (not supported yet)
|
||||
hasstr = False
|
||||
for a in attr:
|
||||
if isinstance(a, StringAttribute):
|
||||
hasstr = True
|
||||
|
||||
meta = MetaData(rel, attr)
|
||||
|
||||
# XXX The following code is not great
|
||||
# Build the type descriptor descr and the list of converters to convert
|
||||
# each attribute to the suitable type (which should match the one in
|
||||
# descr).
|
||||
|
||||
# This can be used once we want to support integer as integer values and
|
||||
# not as numeric anymore (using masked arrays ?).
|
||||
|
||||
if hasstr:
|
||||
# How to support string efficiently ? Ideally, we should know the max
|
||||
# size of the string before allocating the numpy array.
|
||||
raise NotImplementedError("String attributes not supported yet, sorry")
|
||||
|
||||
ni = len(attr)
|
||||
|
||||
def generator(row_iter, delim=','):
|
||||
# TODO: this is where we are spending time (~80%). I think things
|
||||
# could be made more efficiently:
|
||||
# - We could for example "compile" the function, because some values
|
||||
# do not change here.
|
||||
# - The function to convert a line to dtyped values could also be
|
||||
# generated on the fly from a string and be executed instead of
|
||||
# looping.
|
||||
# - The regex are overkill: for comments, checking that a line starts
|
||||
# by % should be enough and faster, and for empty lines, same thing
|
||||
# --> this does not seem to change anything.
|
||||
|
||||
# 'compiling' the range since it does not change
|
||||
# Note, I have already tried zipping the converters and
|
||||
# row elements and got slightly worse performance.
|
||||
elems = list(range(ni))
|
||||
|
||||
dialect = None
|
||||
for raw in row_iter:
|
||||
# We do not abstract skipping comments and empty lines for
|
||||
# performance reasons.
|
||||
if r_comment.match(raw) or r_empty.match(raw):
|
||||
continue
|
||||
|
||||
row, dialect = split_data_line(raw, dialect)
|
||||
|
||||
yield tuple([attr[i].parse_data(row[i]) for i in elems])
|
||||
|
||||
a = list(generator(ofile))
|
||||
# No error should happen here: it is a bug otherwise
|
||||
data = np.array(a, [(a.name, a.dtype) for a in attr])
|
||||
return data, meta
|
||||
|
||||
|
||||
# ----
|
||||
# Misc
|
||||
# ----
|
||||
def basic_stats(data):
|
||||
nbfac = data.size * 1. / (data.size - 1)
|
||||
return np.nanmin(data), np.nanmax(data), np.mean(data), np.std(data) * nbfac
|
||||
|
||||
|
||||
def print_attribute(name, tp, data):
|
||||
type = tp.type_name
|
||||
if type == 'numeric' or type == 'real' or type == 'integer':
|
||||
min, max, mean, std = basic_stats(data)
|
||||
print(f"{name},{type},{min:f},{max:f},{mean:f},{std:f}")
|
||||
else:
|
||||
print(str(tp))
|
||||
|
||||
|
||||
def test_weka(filename):
|
||||
data, meta = loadarff(filename)
|
||||
print(len(data.dtype))
|
||||
print(data.size)
|
||||
for i in meta:
|
||||
print_attribute(i, meta[i], data[i])
|
||||
|
||||
|
||||
# make sure nose does not find this as a test
|
||||
test_weka.__test__ = False
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
filename = sys.argv[1]
|
||||
test_weka(filename)
|
19
venv/lib/python3.12/site-packages/scipy/io/arff/arffread.py
Normal file
19
venv/lib/python3.12/site-packages/scipy/io/arff/arffread.py
Normal file
@ -0,0 +1,19 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.arff` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__ = [ # noqa: F822
|
||||
'MetaData', 'loadarff', 'ArffError', 'ParseArffError',
|
||||
]
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.arff", module="arffread",
|
||||
private_modules=["_arffread"], all=__all__,
|
||||
attribute=name)
|
@ -0,0 +1,225 @@
|
||||
% 1. Title: Iris Plants Database
|
||||
%
|
||||
% 2. Sources:
|
||||
% (a) Creator: R.A. Fisher
|
||||
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
|
||||
% (c) Date: July, 1988
|
||||
%
|
||||
% 3. Past Usage:
|
||||
% - Publications: too many to mention!!! Here are a few.
|
||||
% 1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
|
||||
% Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
|
||||
% to Mathematical Statistics" (John Wiley, NY, 1950).
|
||||
% 2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
|
||||
% (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
|
||||
% 3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
|
||||
% Structure and Classification Rule for Recognition in Partially Exposed
|
||||
% Environments". IEEE Transactions on Pattern Analysis and Machine
|
||||
% Intelligence, Vol. PAMI-2, No. 1, 67-71.
|
||||
% -- Results:
|
||||
% -- very low misclassification rates (0% for the setosa class)
|
||||
% 4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
|
||||
% Transactions on Information Theory, May 1972, 431-433.
|
||||
% -- Results:
|
||||
% -- very low misclassification rates again
|
||||
% 5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
|
||||
% conceptual clustering system finds 3 classes in the data.
|
||||
%
|
||||
% 4. Relevant Information:
|
||||
% --- This is perhaps the best known database to be found in the pattern
|
||||
% recognition literature. Fisher's paper is a classic in the field
|
||||
% and is referenced frequently to this day. (See Duda & Hart, for
|
||||
% example.) The data set contains 3 classes of 50 instances each,
|
||||
% where each class refers to a type of iris plant. One class is
|
||||
% linearly separable from the other 2; the latter are NOT linearly
|
||||
% separable from each other.
|
||||
% --- Predicted attribute: class of iris plant.
|
||||
% --- This is an exceedingly simple domain.
|
||||
%
|
||||
% 5. Number of Instances: 150 (50 in each of three classes)
|
||||
%
|
||||
% 6. Number of Attributes: 4 numeric, predictive attributes and the class
|
||||
%
|
||||
% 7. Attribute Information:
|
||||
% 1. sepal length in cm
|
||||
% 2. sepal width in cm
|
||||
% 3. petal length in cm
|
||||
% 4. petal width in cm
|
||||
% 5. class:
|
||||
% -- Iris Setosa
|
||||
% -- Iris Versicolour
|
||||
% -- Iris Virginica
|
||||
%
|
||||
% 8. Missing Attribute Values: None
|
||||
%
|
||||
% Summary Statistics:
|
||||
% Min Max Mean SD Class Correlation
|
||||
% sepal length: 4.3 7.9 5.84 0.83 0.7826
|
||||
% sepal width: 2.0 4.4 3.05 0.43 -0.4194
|
||||
% petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
|
||||
% petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
|
||||
%
|
||||
% 9. Class Distribution: 33.3% for each of 3 classes.
|
||||
|
||||
@RELATION iris
|
||||
|
||||
@ATTRIBUTE sepallength REAL
|
||||
@ATTRIBUTE sepalwidth REAL
|
||||
@ATTRIBUTE petallength REAL
|
||||
@ATTRIBUTE petalwidth REAL
|
||||
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
|
||||
|
||||
@DATA
|
||||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3.0,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5.0,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5.0,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3.0,1.4,0.1,Iris-setosa
|
||||
4.3,3.0,1.1,0.1,Iris-setosa
|
||||
5.8,4.0,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1.0,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5.0,3.0,1.6,0.2,Iris-setosa
|
||||
5.0,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.0,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
4.4,3.0,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5.0,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5.0,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3.0,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5.0,3.3,1.4,0.2,Iris-setosa
|
||||
7.0,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4.0,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1.0,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5.0,2.0,3.5,1.0,Iris-versicolor
|
||||
5.9,3.0,4.2,1.5,Iris-versicolor
|
||||
6.0,2.2,4.0,1.0,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3.0,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1.0,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4.0,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3.0,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3.0,5.0,1.7,Iris-versicolor
|
||||
6.0,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1.0,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1.0,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6.0,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3.0,4.5,1.5,Iris-versicolor
|
||||
6.0,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3.0,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4.0,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3.0,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4.0,1.2,Iris-versicolor
|
||||
5.0,2.3,3.3,1.0,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3.0,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3.0,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6.0,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3.0,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3.0,5.8,2.2,Iris-virginica
|
||||
7.6,3.0,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2.0,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3.0,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5.0,2.0,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3.0,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6.0,2.2,5.0,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2.0,Iris-virginica
|
||||
7.7,2.8,6.7,2.0,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6.0,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3.0,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3.0,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2.0,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3.0,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6.0,3.0,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3.0,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5.0,1.9,Iris-virginica
|
||||
6.5,3.0,5.2,2.0,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3.0,5.1,1.8,Iris-virginica
|
||||
%
|
||||
%
|
||||
%
|
@ -0,0 +1,8 @@
|
||||
% This arff file contains some missing data
|
||||
@relation missing
|
||||
@attribute yop real
|
||||
@attribute yap real
|
||||
@data
|
||||
1,5
|
||||
2,4
|
||||
?,?
|
@ -0,0 +1,11 @@
|
||||
@RELATION iris
|
||||
|
||||
@ATTRIBUTE sepallength REAL
|
||||
@ATTRIBUTE sepalwidth REAL
|
||||
@ATTRIBUTE petallength REAL
|
||||
@ATTRIBUTE petalwidth REAL
|
||||
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
|
||||
|
||||
@DATA
|
||||
|
||||
% This file has no data
|
@ -0,0 +1,13 @@
|
||||
% Regression test for issue #10232 : Exception in loadarff with quoted nominal attributes
|
||||
% Spaces between elements are stripped by the parser
|
||||
|
||||
@relation SOME_DATA
|
||||
@attribute age numeric
|
||||
@attribute smoker {'yes', 'no'}
|
||||
@data
|
||||
18, 'no'
|
||||
24, 'yes'
|
||||
44, 'no'
|
||||
56, 'no'
|
||||
89,'yes'
|
||||
11, 'no'
|
@ -0,0 +1,13 @@
|
||||
% Regression test for issue #10232 : Exception in loadarff with quoted nominal attributes
|
||||
% Spaces inside quotes are NOT stripped by the parser
|
||||
|
||||
@relation SOME_DATA
|
||||
@attribute age numeric
|
||||
@attribute smoker {' yes', 'no '}
|
||||
@data
|
||||
18,'no '
|
||||
24,' yes'
|
||||
44,'no '
|
||||
56,'no '
|
||||
89,' yes'
|
||||
11,'no '
|
@ -0,0 +1,10 @@
|
||||
@RELATION test1
|
||||
|
||||
@ATTRIBUTE attr0 REAL
|
||||
@ATTRIBUTE attr1 REAL
|
||||
@ATTRIBUTE attr2 REAL
|
||||
@ATTRIBUTE attr3 REAL
|
||||
@ATTRIBUTE class {class0, class1, class2, class3}
|
||||
|
||||
@DATA
|
||||
0.1, 0.2, 0.3, 0.4,class1
|
File diff suppressed because one or more lines are too long
@ -0,0 +1,11 @@
|
||||
@RELATION test11
|
||||
|
||||
@ATTRIBUTE attr0 REAL
|
||||
@ATTRIBUTE attr1 REAL
|
||||
@ATTRIBUTE attr2 REAL
|
||||
@ATTRIBUTE attr3 REAL
|
||||
@ATTRIBUTE class { class0, class1, class2, class3 }
|
||||
@DATA
|
||||
0.1, 0.2, 0.3, 0.4,class1
|
||||
-0.1, -0.2, -0.3, -0.4,class2
|
||||
1, 2, 3, 4,class3
|
@ -0,0 +1,15 @@
|
||||
@RELATION test2
|
||||
|
||||
@ATTRIBUTE attr0 REAL
|
||||
@ATTRIBUTE attr1 real
|
||||
@ATTRIBUTE attr2 integer
|
||||
@ATTRIBUTE attr3 Integer
|
||||
@ATTRIBUTE attr4 Numeric
|
||||
@ATTRIBUTE attr5 numeric
|
||||
@ATTRIBUTE attr6 string
|
||||
@ATTRIBUTE attr7 STRING
|
||||
@ATTRIBUTE attr8 {bla}
|
||||
@ATTRIBUTE attr9 {bla, bla}
|
||||
|
||||
@DATA
|
||||
0.1, 0.2, 0.3, 0.4,class1
|
@ -0,0 +1,6 @@
|
||||
@RELATION test3
|
||||
|
||||
@ATTRIBUTE attr0 crap
|
||||
|
||||
@DATA
|
||||
0.1, 0.2, 0.3, 0.4,class1
|
@ -0,0 +1,11 @@
|
||||
@RELATION test5
|
||||
|
||||
@ATTRIBUTE attr0 REAL
|
||||
@ATTRIBUTE attr1 REAL
|
||||
@ATTRIBUTE attr2 REAL
|
||||
@ATTRIBUTE attr3 REAL
|
||||
@ATTRIBUTE class {class0, class1, class2, class3}
|
||||
@DATA
|
||||
0.1, 0.2, 0.3, 0.4,class1
|
||||
-0.1, -0.2, -0.3, -0.4,class2
|
||||
1, 2, 3, 4,class3
|
@ -0,0 +1,26 @@
|
||||
@RELATION test4
|
||||
|
||||
@ATTRIBUTE attr0 REAL
|
||||
@ATTRIBUTE attr1 REAL
|
||||
@ATTRIBUTE attr2 REAL
|
||||
@ATTRIBUTE attr3 REAL
|
||||
@ATTRIBUTE class {class0, class1, class2, class3}
|
||||
|
||||
@DATA
|
||||
|
||||
% lsdflkjhaksjdhf
|
||||
|
||||
% lsdflkjhaksjdhf
|
||||
|
||||
0.1, 0.2, 0.3, 0.4,class1
|
||||
% laksjdhf
|
||||
|
||||
% lsdflkjhaksjdhf
|
||||
-0.1, -0.2, -0.3, -0.4,class2
|
||||
|
||||
% lsdflkjhaksjdhf
|
||||
% lsdflkjhaksjdhf
|
||||
|
||||
% lsdflkjhaksjdhf
|
||||
|
||||
1, 2, 3, 4,class3
|
@ -0,0 +1,12 @@
|
||||
@RELATION test6
|
||||
|
||||
@ATTRIBUTE attr0 REAL
|
||||
@ATTRIBUTE attr1 REAL
|
||||
@ATTRIBUTE attr2 REAL
|
||||
@ATTRIBUTE attr3 REAL
|
||||
@ATTRIBUTE class {C}
|
||||
|
||||
@DATA
|
||||
0.1, 0.2, 0.3, 0.4,C
|
||||
-0.1, -0.2, -0.3, -0.4,C
|
||||
1, 2, 3, 4,C
|
@ -0,0 +1,15 @@
|
||||
@RELATION test7
|
||||
|
||||
@ATTRIBUTE attr_year DATE yyyy
|
||||
@ATTRIBUTE attr_month DATE yyyy-MM
|
||||
@ATTRIBUTE attr_date DATE yyyy-MM-dd
|
||||
@ATTRIBUTE attr_datetime_local DATE "yyyy-MM-dd HH:mm"
|
||||
@ATTRIBUTE attr_datetime_missing DATE "yyyy-MM-dd HH:mm"
|
||||
|
||||
@DATA
|
||||
1999,1999-01,1999-01-31,"1999-01-31 00:01",?
|
||||
2004,2004-12,2004-12-01,"2004-12-01 23:59","2004-12-01 23:59"
|
||||
1817,1817-04,1817-04-28,"1817-04-28 13:00",?
|
||||
2100,2100-09,2100-09-10,"2100-09-10 12:00",?
|
||||
2013,2013-11,2013-11-30,"2013-11-30 04:55","2013-11-30 04:55"
|
||||
1631,1631-10,1631-10-15,"1631-10-15 20:04","1631-10-15 20:04"
|
@ -0,0 +1,12 @@
|
||||
@RELATION test8
|
||||
|
||||
@ATTRIBUTE attr_datetime_utc DATE "yyyy-MM-dd HH:mm Z"
|
||||
@ATTRIBUTE attr_datetime_full DATE "yy-MM-dd HH:mm:ss z"
|
||||
|
||||
@DATA
|
||||
"1999-01-31 00:01 UTC","99-01-31 00:01:08 +0430"
|
||||
"2004-12-01 23:59 UTC","04-12-01 23:59:59 -0800"
|
||||
"1817-04-28 13:00 UTC","17-04-28 13:00:33 +1000"
|
||||
"2100-09-10 12:00 UTC","21-09-10 12:00:21 -0300"
|
||||
"2013-11-30 04:55 UTC","13-11-30 04:55:48 -1100"
|
||||
"1631-10-15 20:04 UTC","31-10-15 20:04:10 +0000"
|
@ -0,0 +1,14 @@
|
||||
@RELATION test9
|
||||
|
||||
@ATTRIBUTE attr_date_number RELATIONAL
|
||||
@ATTRIBUTE attr_date DATE "yyyy-MM-dd"
|
||||
@ATTRIBUTE attr_number INTEGER
|
||||
@END attr_date_number
|
||||
|
||||
@DATA
|
||||
"1999-01-31 1\n1935-11-27 10"
|
||||
"2004-12-01 2\n1942-08-13 20"
|
||||
"1817-04-28 3"
|
||||
"2100-09-10 4\n1957-04-17 40\n1721-01-14 400"
|
||||
"2013-11-30 5"
|
||||
"1631-10-15 6"
|
@ -0,0 +1,421 @@
|
||||
import datetime
|
||||
import os
|
||||
import sys
|
||||
from os.path import join as pjoin
|
||||
|
||||
from io import StringIO
|
||||
|
||||
import numpy as np
|
||||
|
||||
from numpy.testing import (assert_array_almost_equal,
|
||||
assert_array_equal, assert_equal, assert_)
|
||||
from pytest import raises as assert_raises
|
||||
|
||||
from scipy.io.arff import loadarff
|
||||
from scipy.io.arff._arffread import read_header, ParseArffError
|
||||
|
||||
|
||||
data_path = pjoin(os.path.dirname(__file__), 'data')
|
||||
|
||||
test1 = pjoin(data_path, 'test1.arff')
|
||||
test2 = pjoin(data_path, 'test2.arff')
|
||||
test3 = pjoin(data_path, 'test3.arff')
|
||||
|
||||
test4 = pjoin(data_path, 'test4.arff')
|
||||
test5 = pjoin(data_path, 'test5.arff')
|
||||
test6 = pjoin(data_path, 'test6.arff')
|
||||
test7 = pjoin(data_path, 'test7.arff')
|
||||
test8 = pjoin(data_path, 'test8.arff')
|
||||
test9 = pjoin(data_path, 'test9.arff')
|
||||
test10 = pjoin(data_path, 'test10.arff')
|
||||
test11 = pjoin(data_path, 'test11.arff')
|
||||
test_quoted_nominal = pjoin(data_path, 'quoted_nominal.arff')
|
||||
test_quoted_nominal_spaces = pjoin(data_path, 'quoted_nominal_spaces.arff')
|
||||
|
||||
expect4_data = [(0.1, 0.2, 0.3, 0.4, 'class1'),
|
||||
(-0.1, -0.2, -0.3, -0.4, 'class2'),
|
||||
(1, 2, 3, 4, 'class3')]
|
||||
expected_types = ['numeric', 'numeric', 'numeric', 'numeric', 'nominal']
|
||||
|
||||
missing = pjoin(data_path, 'missing.arff')
|
||||
expect_missing_raw = np.array([[1, 5], [2, 4], [np.nan, np.nan]])
|
||||
expect_missing = np.empty(3, [('yop', float), ('yap', float)])
|
||||
expect_missing['yop'] = expect_missing_raw[:, 0]
|
||||
expect_missing['yap'] = expect_missing_raw[:, 1]
|
||||
|
||||
|
||||
class TestData:
|
||||
def test1(self):
|
||||
# Parsing trivial file with nothing.
|
||||
self._test(test4)
|
||||
|
||||
def test2(self):
|
||||
# Parsing trivial file with some comments in the data section.
|
||||
self._test(test5)
|
||||
|
||||
def test3(self):
|
||||
# Parsing trivial file with nominal attribute of 1 character.
|
||||
self._test(test6)
|
||||
|
||||
def test4(self):
|
||||
# Parsing trivial file with trailing spaces in attribute declaration.
|
||||
self._test(test11)
|
||||
|
||||
def _test(self, test_file):
|
||||
data, meta = loadarff(test_file)
|
||||
for i in range(len(data)):
|
||||
for j in range(4):
|
||||
assert_array_almost_equal(expect4_data[i][j], data[i][j])
|
||||
assert_equal(meta.types(), expected_types)
|
||||
|
||||
def test_filelike(self):
|
||||
# Test reading from file-like object (StringIO)
|
||||
with open(test1) as f1:
|
||||
data1, meta1 = loadarff(f1)
|
||||
with open(test1) as f2:
|
||||
data2, meta2 = loadarff(StringIO(f2.read()))
|
||||
assert_(data1 == data2)
|
||||
assert_(repr(meta1) == repr(meta2))
|
||||
|
||||
def test_path(self):
|
||||
# Test reading from `pathlib.Path` object
|
||||
from pathlib import Path
|
||||
|
||||
with open(test1) as f1:
|
||||
data1, meta1 = loadarff(f1)
|
||||
|
||||
data2, meta2 = loadarff(Path(test1))
|
||||
|
||||
assert_(data1 == data2)
|
||||
assert_(repr(meta1) == repr(meta2))
|
||||
|
||||
|
||||
class TestMissingData:
|
||||
def test_missing(self):
|
||||
data, meta = loadarff(missing)
|
||||
for i in ['yop', 'yap']:
|
||||
assert_array_almost_equal(data[i], expect_missing[i])
|
||||
|
||||
|
||||
class TestNoData:
|
||||
def test_nodata(self):
|
||||
# The file nodata.arff has no data in the @DATA section.
|
||||
# Reading it should result in an array with length 0.
|
||||
nodata_filename = os.path.join(data_path, 'nodata.arff')
|
||||
data, meta = loadarff(nodata_filename)
|
||||
if sys.byteorder == 'big':
|
||||
end = '>'
|
||||
else:
|
||||
end = '<'
|
||||
expected_dtype = np.dtype([('sepallength', f'{end}f8'),
|
||||
('sepalwidth', f'{end}f8'),
|
||||
('petallength', f'{end}f8'),
|
||||
('petalwidth', f'{end}f8'),
|
||||
('class', 'S15')])
|
||||
assert_equal(data.dtype, expected_dtype)
|
||||
assert_equal(data.size, 0)
|
||||
|
||||
|
||||
class TestHeader:
|
||||
def test_type_parsing(self):
|
||||
# Test parsing type of attribute from their value.
|
||||
with open(test2) as ofile:
|
||||
rel, attrs = read_header(ofile)
|
||||
|
||||
expected = ['numeric', 'numeric', 'numeric', 'numeric', 'numeric',
|
||||
'numeric', 'string', 'string', 'nominal', 'nominal']
|
||||
|
||||
for i in range(len(attrs)):
|
||||
assert_(attrs[i].type_name == expected[i])
|
||||
|
||||
def test_badtype_parsing(self):
|
||||
# Test parsing wrong type of attribute from their value.
|
||||
def badtype_read():
|
||||
with open(test3) as ofile:
|
||||
_, _ = read_header(ofile)
|
||||
|
||||
assert_raises(ParseArffError, badtype_read)
|
||||
|
||||
def test_fullheader1(self):
|
||||
# Parsing trivial header with nothing.
|
||||
with open(test1) as ofile:
|
||||
rel, attrs = read_header(ofile)
|
||||
|
||||
# Test relation
|
||||
assert_(rel == 'test1')
|
||||
|
||||
# Test numerical attributes
|
||||
assert_(len(attrs) == 5)
|
||||
for i in range(4):
|
||||
assert_(attrs[i].name == 'attr%d' % i)
|
||||
assert_(attrs[i].type_name == 'numeric')
|
||||
|
||||
# Test nominal attribute
|
||||
assert_(attrs[4].name == 'class')
|
||||
assert_(attrs[4].values == ('class0', 'class1', 'class2', 'class3'))
|
||||
|
||||
def test_dateheader(self):
|
||||
with open(test7) as ofile:
|
||||
rel, attrs = read_header(ofile)
|
||||
|
||||
assert_(rel == 'test7')
|
||||
|
||||
assert_(len(attrs) == 5)
|
||||
|
||||
assert_(attrs[0].name == 'attr_year')
|
||||
assert_(attrs[0].date_format == '%Y')
|
||||
|
||||
assert_(attrs[1].name == 'attr_month')
|
||||
assert_(attrs[1].date_format == '%Y-%m')
|
||||
|
||||
assert_(attrs[2].name == 'attr_date')
|
||||
assert_(attrs[2].date_format == '%Y-%m-%d')
|
||||
|
||||
assert_(attrs[3].name == 'attr_datetime_local')
|
||||
assert_(attrs[3].date_format == '%Y-%m-%d %H:%M')
|
||||
|
||||
assert_(attrs[4].name == 'attr_datetime_missing')
|
||||
assert_(attrs[4].date_format == '%Y-%m-%d %H:%M')
|
||||
|
||||
def test_dateheader_unsupported(self):
|
||||
def read_dateheader_unsupported():
|
||||
with open(test8) as ofile:
|
||||
_, _ = read_header(ofile)
|
||||
|
||||
assert_raises(ValueError, read_dateheader_unsupported)
|
||||
|
||||
|
||||
class TestDateAttribute:
|
||||
def setup_method(self):
|
||||
self.data, self.meta = loadarff(test7)
|
||||
|
||||
def test_year_attribute(self):
|
||||
expected = np.array([
|
||||
'1999',
|
||||
'2004',
|
||||
'1817',
|
||||
'2100',
|
||||
'2013',
|
||||
'1631'
|
||||
], dtype='datetime64[Y]')
|
||||
|
||||
assert_array_equal(self.data["attr_year"], expected)
|
||||
|
||||
def test_month_attribute(self):
|
||||
expected = np.array([
|
||||
'1999-01',
|
||||
'2004-12',
|
||||
'1817-04',
|
||||
'2100-09',
|
||||
'2013-11',
|
||||
'1631-10'
|
||||
], dtype='datetime64[M]')
|
||||
|
||||
assert_array_equal(self.data["attr_month"], expected)
|
||||
|
||||
def test_date_attribute(self):
|
||||
expected = np.array([
|
||||
'1999-01-31',
|
||||
'2004-12-01',
|
||||
'1817-04-28',
|
||||
'2100-09-10',
|
||||
'2013-11-30',
|
||||
'1631-10-15'
|
||||
], dtype='datetime64[D]')
|
||||
|
||||
assert_array_equal(self.data["attr_date"], expected)
|
||||
|
||||
def test_datetime_local_attribute(self):
|
||||
expected = np.array([
|
||||
datetime.datetime(year=1999, month=1, day=31, hour=0, minute=1),
|
||||
datetime.datetime(year=2004, month=12, day=1, hour=23, minute=59),
|
||||
datetime.datetime(year=1817, month=4, day=28, hour=13, minute=0),
|
||||
datetime.datetime(year=2100, month=9, day=10, hour=12, minute=0),
|
||||
datetime.datetime(year=2013, month=11, day=30, hour=4, minute=55),
|
||||
datetime.datetime(year=1631, month=10, day=15, hour=20, minute=4)
|
||||
], dtype='datetime64[m]')
|
||||
|
||||
assert_array_equal(self.data["attr_datetime_local"], expected)
|
||||
|
||||
def test_datetime_missing(self):
|
||||
expected = np.array([
|
||||
'nat',
|
||||
'2004-12-01T23:59',
|
||||
'nat',
|
||||
'nat',
|
||||
'2013-11-30T04:55',
|
||||
'1631-10-15T20:04'
|
||||
], dtype='datetime64[m]')
|
||||
|
||||
assert_array_equal(self.data["attr_datetime_missing"], expected)
|
||||
|
||||
def test_datetime_timezone(self):
|
||||
assert_raises(ParseArffError, loadarff, test8)
|
||||
|
||||
|
||||
class TestRelationalAttribute:
|
||||
def setup_method(self):
|
||||
self.data, self.meta = loadarff(test9)
|
||||
|
||||
def test_attributes(self):
|
||||
assert_equal(len(self.meta._attributes), 1)
|
||||
|
||||
relational = list(self.meta._attributes.values())[0]
|
||||
|
||||
assert_equal(relational.name, 'attr_date_number')
|
||||
assert_equal(relational.type_name, 'relational')
|
||||
assert_equal(len(relational.attributes), 2)
|
||||
assert_equal(relational.attributes[0].name,
|
||||
'attr_date')
|
||||
assert_equal(relational.attributes[0].type_name,
|
||||
'date')
|
||||
assert_equal(relational.attributes[1].name,
|
||||
'attr_number')
|
||||
assert_equal(relational.attributes[1].type_name,
|
||||
'numeric')
|
||||
|
||||
def test_data(self):
|
||||
dtype_instance = [('attr_date', 'datetime64[D]'),
|
||||
('attr_number', np.float64)]
|
||||
|
||||
expected = [
|
||||
np.array([('1999-01-31', 1), ('1935-11-27', 10)],
|
||||
dtype=dtype_instance),
|
||||
np.array([('2004-12-01', 2), ('1942-08-13', 20)],
|
||||
dtype=dtype_instance),
|
||||
np.array([('1817-04-28', 3)],
|
||||
dtype=dtype_instance),
|
||||
np.array([('2100-09-10', 4), ('1957-04-17', 40),
|
||||
('1721-01-14', 400)],
|
||||
dtype=dtype_instance),
|
||||
np.array([('2013-11-30', 5)],
|
||||
dtype=dtype_instance),
|
||||
np.array([('1631-10-15', 6)],
|
||||
dtype=dtype_instance)
|
||||
]
|
||||
|
||||
for i in range(len(self.data["attr_date_number"])):
|
||||
assert_array_equal(self.data["attr_date_number"][i],
|
||||
expected[i])
|
||||
|
||||
|
||||
class TestRelationalAttributeLong:
|
||||
def setup_method(self):
|
||||
self.data, self.meta = loadarff(test10)
|
||||
|
||||
def test_attributes(self):
|
||||
assert_equal(len(self.meta._attributes), 1)
|
||||
|
||||
relational = list(self.meta._attributes.values())[0]
|
||||
|
||||
assert_equal(relational.name, 'attr_relational')
|
||||
assert_equal(relational.type_name, 'relational')
|
||||
assert_equal(len(relational.attributes), 1)
|
||||
assert_equal(relational.attributes[0].name,
|
||||
'attr_number')
|
||||
assert_equal(relational.attributes[0].type_name, 'numeric')
|
||||
|
||||
def test_data(self):
|
||||
dtype_instance = [('attr_number', np.float64)]
|
||||
|
||||
expected = np.array([(n,) for n in range(30000)],
|
||||
dtype=dtype_instance)
|
||||
|
||||
assert_array_equal(self.data["attr_relational"][0],
|
||||
expected)
|
||||
|
||||
|
||||
class TestQuotedNominal:
|
||||
"""
|
||||
Regression test for issue #10232:
|
||||
|
||||
Exception in loadarff with quoted nominal attributes.
|
||||
"""
|
||||
|
||||
def setup_method(self):
|
||||
self.data, self.meta = loadarff(test_quoted_nominal)
|
||||
|
||||
def test_attributes(self):
|
||||
assert_equal(len(self.meta._attributes), 2)
|
||||
|
||||
age, smoker = self.meta._attributes.values()
|
||||
|
||||
assert_equal(age.name, 'age')
|
||||
assert_equal(age.type_name, 'numeric')
|
||||
assert_equal(smoker.name, 'smoker')
|
||||
assert_equal(smoker.type_name, 'nominal')
|
||||
assert_equal(smoker.values, ['yes', 'no'])
|
||||
|
||||
def test_data(self):
|
||||
|
||||
age_dtype_instance = np.float64
|
||||
smoker_dtype_instance = '<S3'
|
||||
|
||||
age_expected = np.array([
|
||||
18,
|
||||
24,
|
||||
44,
|
||||
56,
|
||||
89,
|
||||
11,
|
||||
], dtype=age_dtype_instance)
|
||||
|
||||
smoker_expected = np.array([
|
||||
'no',
|
||||
'yes',
|
||||
'no',
|
||||
'no',
|
||||
'yes',
|
||||
'no',
|
||||
], dtype=smoker_dtype_instance)
|
||||
|
||||
assert_array_equal(self.data["age"], age_expected)
|
||||
assert_array_equal(self.data["smoker"], smoker_expected)
|
||||
|
||||
|
||||
class TestQuotedNominalSpaces:
|
||||
"""
|
||||
Regression test for issue #10232:
|
||||
|
||||
Exception in loadarff with quoted nominal attributes.
|
||||
"""
|
||||
|
||||
def setup_method(self):
|
||||
self.data, self.meta = loadarff(test_quoted_nominal_spaces)
|
||||
|
||||
def test_attributes(self):
|
||||
assert_equal(len(self.meta._attributes), 2)
|
||||
|
||||
age, smoker = self.meta._attributes.values()
|
||||
|
||||
assert_equal(age.name, 'age')
|
||||
assert_equal(age.type_name, 'numeric')
|
||||
assert_equal(smoker.name, 'smoker')
|
||||
assert_equal(smoker.type_name, 'nominal')
|
||||
assert_equal(smoker.values, [' yes', 'no '])
|
||||
|
||||
def test_data(self):
|
||||
|
||||
age_dtype_instance = np.float64
|
||||
smoker_dtype_instance = '<S5'
|
||||
|
||||
age_expected = np.array([
|
||||
18,
|
||||
24,
|
||||
44,
|
||||
56,
|
||||
89,
|
||||
11,
|
||||
], dtype=age_dtype_instance)
|
||||
|
||||
smoker_expected = np.array([
|
||||
'no ',
|
||||
' yes',
|
||||
'no ',
|
||||
'no ',
|
||||
' yes',
|
||||
'no ',
|
||||
], dtype=smoker_dtype_instance)
|
||||
|
||||
assert_array_equal(self.data["age"], age_expected)
|
||||
assert_array_equal(self.data["smoker"], smoker_expected)
|
17
venv/lib/python3.12/site-packages/scipy/io/harwell_boeing.py
Normal file
17
venv/lib/python3.12/site-packages/scipy/io/harwell_boeing.py
Normal file
@ -0,0 +1,17 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__ = ["hb_read", "hb_write"] # noqa: F822
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io", module="harwell_boeing",
|
||||
private_modules=["_harwell_boeing"], all=__all__,
|
||||
attribute=name)
|
17
venv/lib/python3.12/site-packages/scipy/io/idl.py
Normal file
17
venv/lib/python3.12/site-packages/scipy/io/idl.py
Normal file
@ -0,0 +1,17 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__ = ["readsav"] # noqa: F822
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io", module="idl",
|
||||
private_modules=["_idl"], all=__all__,
|
||||
attribute=name)
|
@ -0,0 +1,63 @@
|
||||
"""
|
||||
MATLAB® file utilities (:mod:`scipy.io.matlab`)
|
||||
===============================================
|
||||
|
||||
.. currentmodule:: scipy.io.matlab
|
||||
|
||||
This submodule is meant to provide lower-level file utilities related to reading
|
||||
and writing MATLAB files.
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
matfile_version - Get the MATLAB file version
|
||||
MatReadError - Exception indicating a read issue
|
||||
MatReadWarning - Warning class for read issues
|
||||
MatWriteError - Exception indicating a write issue
|
||||
mat_struct - Class used when ``struct_as_record=False``
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
:template: autosummary/ndarray_subclass.rst
|
||||
:nosignatures:
|
||||
|
||||
MatlabObject - Class for a MATLAB object
|
||||
MatlabOpaque - Class for a MATLAB opaque matrix
|
||||
MatlabFunction - Class for a MATLAB function object
|
||||
|
||||
The following utilities that live in the :mod:`scipy.io`
|
||||
namespace also exist in this namespace:
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
loadmat - Read a MATLAB style mat file (version 4 through 7.1)
|
||||
savemat - Write a MATLAB style mat file (version 4 through 7.1)
|
||||
whosmat - List contents of a MATLAB style mat file (version 4 through 7.1)
|
||||
|
||||
Notes
|
||||
-----
|
||||
MATLAB(R) is a registered trademark of The MathWorks, Inc., 3 Apple Hill
|
||||
Drive, Natick, MA 01760-2098, USA.
|
||||
|
||||
"""
|
||||
# Matlab file read and write utilities
|
||||
from ._mio import loadmat, savemat, whosmat
|
||||
from ._mio5 import MatlabFunction
|
||||
from ._mio5_params import MatlabObject, MatlabOpaque, mat_struct
|
||||
from ._miobase import (matfile_version, MatReadError, MatReadWarning,
|
||||
MatWriteError)
|
||||
|
||||
# Deprecated namespaces, to be removed in v2.0.0
|
||||
from .import (mio, mio5, mio5_params, mio4, byteordercodes,
|
||||
miobase, mio_utils, streams, mio5_utils)
|
||||
|
||||
__all__ = [
|
||||
'loadmat', 'savemat', 'whosmat', 'MatlabObject',
|
||||
'matfile_version', 'MatReadError', 'MatReadWarning',
|
||||
'MatWriteError', 'mat_struct', 'MatlabOpaque', 'MatlabFunction'
|
||||
]
|
||||
|
||||
from scipy._lib._testutils import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
@ -0,0 +1,75 @@
|
||||
''' Byteorder utilities for system - numpy byteorder encoding
|
||||
|
||||
Converts a variety of string codes for little endian, big endian,
|
||||
native byte order and swapped byte order to explicit NumPy endian
|
||||
codes - one of '<' (little endian) or '>' (big endian)
|
||||
|
||||
'''
|
||||
import sys
|
||||
|
||||
__all__ = [
|
||||
'aliases', 'native_code', 'swapped_code',
|
||||
'sys_is_le', 'to_numpy_code'
|
||||
]
|
||||
|
||||
sys_is_le = sys.byteorder == 'little'
|
||||
native_code = sys_is_le and '<' or '>'
|
||||
swapped_code = sys_is_le and '>' or '<'
|
||||
|
||||
aliases = {'little': ('little', '<', 'l', 'le'),
|
||||
'big': ('big', '>', 'b', 'be'),
|
||||
'native': ('native', '='),
|
||||
'swapped': ('swapped', 'S')}
|
||||
|
||||
|
||||
def to_numpy_code(code):
|
||||
"""
|
||||
Convert various order codings to NumPy format.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
code : str
|
||||
The code to convert. It is converted to lower case before parsing.
|
||||
Legal values are:
|
||||
'little', 'big', 'l', 'b', 'le', 'be', '<', '>', 'native', '=',
|
||||
'swapped', 's'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out_code : {'<', '>'}
|
||||
Here '<' is the numpy dtype code for little endian,
|
||||
and '>' is the code for big endian.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import sys
|
||||
>>> from scipy.io.matlab._byteordercodes import to_numpy_code
|
||||
>>> sys_is_le = (sys.byteorder == 'little')
|
||||
>>> sys_is_le
|
||||
True
|
||||
>>> to_numpy_code('big')
|
||||
'>'
|
||||
>>> to_numpy_code('little')
|
||||
'<'
|
||||
>>> nc = to_numpy_code('native')
|
||||
>>> nc == '<' if sys_is_le else nc == '>'
|
||||
True
|
||||
>>> sc = to_numpy_code('swapped')
|
||||
>>> sc == '>' if sys_is_le else sc == '<'
|
||||
True
|
||||
|
||||
"""
|
||||
code = code.lower()
|
||||
if code is None:
|
||||
return native_code
|
||||
if code in aliases['little']:
|
||||
return '<'
|
||||
elif code in aliases['big']:
|
||||
return '>'
|
||||
elif code in aliases['native']:
|
||||
return native_code
|
||||
elif code in aliases['swapped']:
|
||||
return swapped_code
|
||||
else:
|
||||
raise ValueError(
|
||||
'We cannot handle byte order %s' % code)
|
359
venv/lib/python3.12/site-packages/scipy/io/matlab/_mio.py
Normal file
359
venv/lib/python3.12/site-packages/scipy/io/matlab/_mio.py
Normal file
@ -0,0 +1,359 @@
|
||||
"""
|
||||
Module for reading and writing matlab (TM) .mat files
|
||||
"""
|
||||
# Authors: Travis Oliphant, Matthew Brett
|
||||
|
||||
from contextlib import contextmanager
|
||||
|
||||
from ._miobase import _get_matfile_version, docfiller
|
||||
from ._mio4 import MatFile4Reader, MatFile4Writer
|
||||
from ._mio5 import MatFile5Reader, MatFile5Writer
|
||||
|
||||
__all__ = ['loadmat', 'savemat', 'whosmat']
|
||||
|
||||
|
||||
@contextmanager
|
||||
def _open_file_context(file_like, appendmat, mode='rb'):
|
||||
f, opened = _open_file(file_like, appendmat, mode)
|
||||
try:
|
||||
yield f
|
||||
finally:
|
||||
if opened:
|
||||
f.close()
|
||||
|
||||
|
||||
def _open_file(file_like, appendmat, mode='rb'):
|
||||
"""
|
||||
Open `file_like` and return as file-like object. First, check if object is
|
||||
already file-like; if so, return it as-is. Otherwise, try to pass it
|
||||
to open(). If that fails, and `file_like` is a string, and `appendmat` is true,
|
||||
append '.mat' and try again.
|
||||
"""
|
||||
reqs = {'read'} if set(mode) & set('r+') else set()
|
||||
if set(mode) & set('wax+'):
|
||||
reqs.add('write')
|
||||
if reqs.issubset(dir(file_like)):
|
||||
return file_like, False
|
||||
|
||||
try:
|
||||
return open(file_like, mode), True
|
||||
except OSError as e:
|
||||
# Probably "not found"
|
||||
if isinstance(file_like, str):
|
||||
if appendmat and not file_like.endswith('.mat'):
|
||||
file_like += '.mat'
|
||||
return open(file_like, mode), True
|
||||
else:
|
||||
raise OSError(
|
||||
'Reader needs file name or open file-like object'
|
||||
) from e
|
||||
|
||||
|
||||
@docfiller
|
||||
def mat_reader_factory(file_name, appendmat=True, **kwargs):
|
||||
"""
|
||||
Create reader for matlab .mat format files.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
%(file_arg)s
|
||||
%(append_arg)s
|
||||
%(load_args)s
|
||||
%(struct_arg)s
|
||||
|
||||
Returns
|
||||
-------
|
||||
matreader : MatFileReader object
|
||||
Initialized instance of MatFileReader class matching the mat file
|
||||
type detected in `filename`.
|
||||
file_opened : bool
|
||||
Whether the file was opened by this routine.
|
||||
|
||||
"""
|
||||
byte_stream, file_opened = _open_file(file_name, appendmat)
|
||||
mjv, mnv = _get_matfile_version(byte_stream)
|
||||
if mjv == 0:
|
||||
return MatFile4Reader(byte_stream, **kwargs), file_opened
|
||||
elif mjv == 1:
|
||||
return MatFile5Reader(byte_stream, **kwargs), file_opened
|
||||
elif mjv == 2:
|
||||
raise NotImplementedError('Please use HDF reader for matlab v7.3 '
|
||||
'files, e.g. h5py')
|
||||
else:
|
||||
raise TypeError('Did not recognize version %s' % mjv)
|
||||
|
||||
|
||||
@docfiller
|
||||
def loadmat(file_name, mdict=None, appendmat=True, **kwargs):
|
||||
"""
|
||||
Load MATLAB file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file_name : str
|
||||
Name of the mat file (do not need .mat extension if
|
||||
appendmat==True). Can also pass open file-like object.
|
||||
mdict : dict, optional
|
||||
Dictionary in which to insert matfile variables.
|
||||
appendmat : bool, optional
|
||||
True to append the .mat extension to the end of the given
|
||||
filename, if not already present. Default is True.
|
||||
byte_order : str or None, optional
|
||||
None by default, implying byte order guessed from mat
|
||||
file. Otherwise can be one of ('native', '=', 'little', '<',
|
||||
'BIG', '>').
|
||||
mat_dtype : bool, optional
|
||||
If True, return arrays in same dtype as would be loaded into
|
||||
MATLAB (instead of the dtype with which they are saved).
|
||||
squeeze_me : bool, optional
|
||||
Whether to squeeze unit matrix dimensions or not.
|
||||
chars_as_strings : bool, optional
|
||||
Whether to convert char arrays to string arrays.
|
||||
matlab_compatible : bool, optional
|
||||
Returns matrices as would be loaded by MATLAB (implies
|
||||
squeeze_me=False, chars_as_strings=False, mat_dtype=True,
|
||||
struct_as_record=True).
|
||||
struct_as_record : bool, optional
|
||||
Whether to load MATLAB structs as NumPy record arrays, or as
|
||||
old-style NumPy arrays with dtype=object. Setting this flag to
|
||||
False replicates the behavior of scipy version 0.7.x (returning
|
||||
NumPy object arrays). The default setting is True, because it
|
||||
allows easier round-trip load and save of MATLAB files.
|
||||
verify_compressed_data_integrity : bool, optional
|
||||
Whether the length of compressed sequences in the MATLAB file
|
||||
should be checked, to ensure that they are not longer than we expect.
|
||||
It is advisable to enable this (the default) because overlong
|
||||
compressed sequences in MATLAB files generally indicate that the
|
||||
files have experienced some sort of corruption.
|
||||
variable_names : None or sequence
|
||||
If None (the default) - read all variables in file. Otherwise,
|
||||
`variable_names` should be a sequence of strings, giving names of the
|
||||
MATLAB variables to read from the file. The reader will skip any
|
||||
variable with a name not in this sequence, possibly saving some read
|
||||
processing.
|
||||
simplify_cells : False, optional
|
||||
If True, return a simplified dict structure (which is useful if the mat
|
||||
file contains cell arrays). Note that this only affects the structure
|
||||
of the result and not its contents (which is identical for both output
|
||||
structures). If True, this automatically sets `struct_as_record` to
|
||||
False and `squeeze_me` to True, which is required to simplify cells.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mat_dict : dict
|
||||
dictionary with variable names as keys, and loaded matrices as
|
||||
values.
|
||||
|
||||
Notes
|
||||
-----
|
||||
v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
|
||||
|
||||
You will need an HDF5 Python library to read MATLAB 7.3 format mat
|
||||
files. Because SciPy does not supply one, we do not implement the
|
||||
HDF5 / 7.3 interface here.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from os.path import dirname, join as pjoin
|
||||
>>> import scipy.io as sio
|
||||
|
||||
Get the filename for an example .mat file from the tests/data directory.
|
||||
|
||||
>>> data_dir = pjoin(dirname(sio.__file__), 'matlab', 'tests', 'data')
|
||||
>>> mat_fname = pjoin(data_dir, 'testdouble_7.4_GLNX86.mat')
|
||||
|
||||
Load the .mat file contents.
|
||||
|
||||
>>> mat_contents = sio.loadmat(mat_fname)
|
||||
|
||||
The result is a dictionary, one key/value pair for each variable:
|
||||
|
||||
>>> sorted(mat_contents.keys())
|
||||
['__globals__', '__header__', '__version__', 'testdouble']
|
||||
>>> mat_contents['testdouble']
|
||||
array([[0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
|
||||
3.92699082, 4.71238898, 5.49778714, 6.28318531]])
|
||||
|
||||
By default SciPy reads MATLAB structs as structured NumPy arrays where the
|
||||
dtype fields are of type `object` and the names correspond to the MATLAB
|
||||
struct field names. This can be disabled by setting the optional argument
|
||||
`struct_as_record=False`.
|
||||
|
||||
Get the filename for an example .mat file that contains a MATLAB struct
|
||||
called `teststruct` and load the contents.
|
||||
|
||||
>>> matstruct_fname = pjoin(data_dir, 'teststruct_7.4_GLNX86.mat')
|
||||
>>> matstruct_contents = sio.loadmat(matstruct_fname)
|
||||
>>> teststruct = matstruct_contents['teststruct']
|
||||
>>> teststruct.dtype
|
||||
dtype([('stringfield', 'O'), ('doublefield', 'O'), ('complexfield', 'O')])
|
||||
|
||||
The size of the structured array is the size of the MATLAB struct, not the
|
||||
number of elements in any particular field. The shape defaults to 2-D
|
||||
unless the optional argument `squeeze_me=True`, in which case all length 1
|
||||
dimensions are removed.
|
||||
|
||||
>>> teststruct.size
|
||||
1
|
||||
>>> teststruct.shape
|
||||
(1, 1)
|
||||
|
||||
Get the 'stringfield' of the first element in the MATLAB struct.
|
||||
|
||||
>>> teststruct[0, 0]['stringfield']
|
||||
array(['Rats live on no evil star.'],
|
||||
dtype='<U26')
|
||||
|
||||
Get the first element of the 'doublefield'.
|
||||
|
||||
>>> teststruct['doublefield'][0, 0]
|
||||
array([[ 1.41421356, 2.71828183, 3.14159265]])
|
||||
|
||||
Load the MATLAB struct, squeezing out length 1 dimensions, and get the item
|
||||
from the 'complexfield'.
|
||||
|
||||
>>> matstruct_squeezed = sio.loadmat(matstruct_fname, squeeze_me=True)
|
||||
>>> matstruct_squeezed['teststruct'].shape
|
||||
()
|
||||
>>> matstruct_squeezed['teststruct']['complexfield'].shape
|
||||
()
|
||||
>>> matstruct_squeezed['teststruct']['complexfield'].item()
|
||||
array([ 1.41421356+1.41421356j, 2.71828183+2.71828183j,
|
||||
3.14159265+3.14159265j])
|
||||
"""
|
||||
variable_names = kwargs.pop('variable_names', None)
|
||||
with _open_file_context(file_name, appendmat) as f:
|
||||
MR, _ = mat_reader_factory(f, **kwargs)
|
||||
matfile_dict = MR.get_variables(variable_names)
|
||||
|
||||
if mdict is not None:
|
||||
mdict.update(matfile_dict)
|
||||
else:
|
||||
mdict = matfile_dict
|
||||
|
||||
return mdict
|
||||
|
||||
|
||||
@docfiller
|
||||
def savemat(file_name, mdict,
|
||||
appendmat=True,
|
||||
format='5',
|
||||
long_field_names=False,
|
||||
do_compression=False,
|
||||
oned_as='row'):
|
||||
"""
|
||||
Save a dictionary of names and arrays into a MATLAB-style .mat file.
|
||||
|
||||
This saves the array objects in the given dictionary to a MATLAB-
|
||||
style .mat file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file_name : str or file-like object
|
||||
Name of the .mat file (.mat extension not needed if ``appendmat ==
|
||||
True``).
|
||||
Can also pass open file_like object.
|
||||
mdict : dict
|
||||
Dictionary from which to save matfile variables.
|
||||
appendmat : bool, optional
|
||||
True (the default) to append the .mat extension to the end of the
|
||||
given filename, if not already present.
|
||||
format : {'5', '4'}, string, optional
|
||||
'5' (the default) for MATLAB 5 and up (to 7.2),
|
||||
'4' for MATLAB 4 .mat files.
|
||||
long_field_names : bool, optional
|
||||
False (the default) - maximum field name length in a structure is
|
||||
31 characters which is the documented maximum length.
|
||||
True - maximum field name length in a structure is 63 characters
|
||||
which works for MATLAB 7.6+.
|
||||
do_compression : bool, optional
|
||||
Whether or not to compress matrices on write. Default is False.
|
||||
oned_as : {'row', 'column'}, optional
|
||||
If 'column', write 1-D NumPy arrays as column vectors.
|
||||
If 'row', write 1-D NumPy arrays as row vectors.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.io import savemat
|
||||
>>> import numpy as np
|
||||
>>> a = np.arange(20)
|
||||
>>> mdic = {"a": a, "label": "experiment"}
|
||||
>>> mdic
|
||||
{'a': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
|
||||
17, 18, 19]),
|
||||
'label': 'experiment'}
|
||||
>>> savemat("matlab_matrix.mat", mdic)
|
||||
"""
|
||||
with _open_file_context(file_name, appendmat, 'wb') as file_stream:
|
||||
if format == '4':
|
||||
if long_field_names:
|
||||
message = "Long field names are not available for version 4 files"
|
||||
raise ValueError(message)
|
||||
MW = MatFile4Writer(file_stream, oned_as)
|
||||
elif format == '5':
|
||||
MW = MatFile5Writer(file_stream,
|
||||
do_compression=do_compression,
|
||||
unicode_strings=True,
|
||||
long_field_names=long_field_names,
|
||||
oned_as=oned_as)
|
||||
else:
|
||||
raise ValueError("Format should be '4' or '5'")
|
||||
MW.put_variables(mdict)
|
||||
|
||||
|
||||
@docfiller
|
||||
def whosmat(file_name, appendmat=True, **kwargs):
|
||||
"""
|
||||
List variables inside a MATLAB file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
%(file_arg)s
|
||||
%(append_arg)s
|
||||
%(load_args)s
|
||||
%(struct_arg)s
|
||||
|
||||
Returns
|
||||
-------
|
||||
variables : list of tuples
|
||||
A list of tuples, where each tuple holds the matrix name (a string),
|
||||
its shape (tuple of ints), and its data class (a string).
|
||||
Possible data classes are: int8, uint8, int16, uint16, int32, uint32,
|
||||
int64, uint64, single, double, cell, struct, object, char, sparse,
|
||||
function, opaque, logical, unknown.
|
||||
|
||||
Notes
|
||||
-----
|
||||
v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
|
||||
|
||||
You will need an HDF5 python library to read matlab 7.3 format mat
|
||||
files (e.g. h5py). Because SciPy does not supply one, we do not implement the
|
||||
HDF5 / 7.3 interface here.
|
||||
|
||||
.. versionadded:: 0.12.0
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from io import BytesIO
|
||||
>>> import numpy as np
|
||||
>>> from scipy.io import savemat, whosmat
|
||||
|
||||
Create some arrays, and use `savemat` to write them to a ``BytesIO``
|
||||
instance.
|
||||
|
||||
>>> a = np.array([[10, 20, 30], [11, 21, 31]], dtype=np.int32)
|
||||
>>> b = np.geomspace(1, 10, 5)
|
||||
>>> f = BytesIO()
|
||||
>>> savemat(f, {'a': a, 'b': b})
|
||||
|
||||
Use `whosmat` to inspect ``f``. Each tuple in the output list gives
|
||||
the name, shape and data type of the array in ``f``.
|
||||
|
||||
>>> whosmat(f)
|
||||
[('a', (2, 3), 'int32'), ('b', (1, 5), 'double')]
|
||||
|
||||
"""
|
||||
with _open_file_context(file_name, appendmat) as f:
|
||||
ML, file_opened = mat_reader_factory(f, **kwargs)
|
||||
variables = ML.list_variables()
|
||||
return variables
|
625
venv/lib/python3.12/site-packages/scipy/io/matlab/_mio4.py
Normal file
625
venv/lib/python3.12/site-packages/scipy/io/matlab/_mio4.py
Normal file
@ -0,0 +1,625 @@
|
||||
''' Classes for read / write of matlab (TM) 4 files
|
||||
'''
|
||||
import sys
|
||||
import warnings
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
import scipy.sparse
|
||||
|
||||
from ._miobase import (MatFileReader, docfiller, matdims, read_dtype,
|
||||
convert_dtypes, arr_to_chars, arr_dtype_number)
|
||||
|
||||
from ._mio_utils import squeeze_element, chars_to_strings
|
||||
from functools import reduce
|
||||
|
||||
|
||||
__all__ = [
|
||||
'MatFile4Reader', 'MatFile4Writer', 'SYS_LITTLE_ENDIAN',
|
||||
'VarHeader4', 'VarReader4', 'VarWriter4', 'arr_to_2d', 'mclass_info',
|
||||
'mdtypes_template', 'miDOUBLE', 'miINT16', 'miINT32', 'miSINGLE',
|
||||
'miUINT16', 'miUINT8', 'mxCHAR_CLASS', 'mxFULL_CLASS', 'mxSPARSE_CLASS',
|
||||
'np_to_mtypes', 'order_codes'
|
||||
]
|
||||
|
||||
|
||||
SYS_LITTLE_ENDIAN = sys.byteorder == 'little'
|
||||
|
||||
miDOUBLE = 0
|
||||
miSINGLE = 1
|
||||
miINT32 = 2
|
||||
miINT16 = 3
|
||||
miUINT16 = 4
|
||||
miUINT8 = 5
|
||||
|
||||
mdtypes_template = {
|
||||
miDOUBLE: 'f8',
|
||||
miSINGLE: 'f4',
|
||||
miINT32: 'i4',
|
||||
miINT16: 'i2',
|
||||
miUINT16: 'u2',
|
||||
miUINT8: 'u1',
|
||||
'header': [('mopt', 'i4'),
|
||||
('mrows', 'i4'),
|
||||
('ncols', 'i4'),
|
||||
('imagf', 'i4'),
|
||||
('namlen', 'i4')],
|
||||
'U1': 'U1',
|
||||
}
|
||||
|
||||
np_to_mtypes = {
|
||||
'f8': miDOUBLE,
|
||||
'c32': miDOUBLE,
|
||||
'c24': miDOUBLE,
|
||||
'c16': miDOUBLE,
|
||||
'f4': miSINGLE,
|
||||
'c8': miSINGLE,
|
||||
'i4': miINT32,
|
||||
'i2': miINT16,
|
||||
'u2': miUINT16,
|
||||
'u1': miUINT8,
|
||||
'S1': miUINT8,
|
||||
}
|
||||
|
||||
# matrix classes
|
||||
mxFULL_CLASS = 0
|
||||
mxCHAR_CLASS = 1
|
||||
mxSPARSE_CLASS = 2
|
||||
|
||||
order_codes = {
|
||||
0: '<',
|
||||
1: '>',
|
||||
2: 'VAX D-float', # !
|
||||
3: 'VAX G-float',
|
||||
4: 'Cray', # !!
|
||||
}
|
||||
|
||||
mclass_info = {
|
||||
mxFULL_CLASS: 'double',
|
||||
mxCHAR_CLASS: 'char',
|
||||
mxSPARSE_CLASS: 'sparse',
|
||||
}
|
||||
|
||||
|
||||
class VarHeader4:
|
||||
# Mat4 variables never logical or global
|
||||
is_logical = False
|
||||
is_global = False
|
||||
|
||||
def __init__(self,
|
||||
name,
|
||||
dtype,
|
||||
mclass,
|
||||
dims,
|
||||
is_complex):
|
||||
self.name = name
|
||||
self.dtype = dtype
|
||||
self.mclass = mclass
|
||||
self.dims = dims
|
||||
self.is_complex = is_complex
|
||||
|
||||
|
||||
class VarReader4:
|
||||
''' Class to read matlab 4 variables '''
|
||||
|
||||
def __init__(self, file_reader):
|
||||
self.file_reader = file_reader
|
||||
self.mat_stream = file_reader.mat_stream
|
||||
self.dtypes = file_reader.dtypes
|
||||
self.chars_as_strings = file_reader.chars_as_strings
|
||||
self.squeeze_me = file_reader.squeeze_me
|
||||
|
||||
def read_header(self):
|
||||
''' Read and return header for variable '''
|
||||
data = read_dtype(self.mat_stream, self.dtypes['header'])
|
||||
name = self.mat_stream.read(int(data['namlen'])).strip(b'\x00')
|
||||
if data['mopt'] < 0 or data['mopt'] > 5000:
|
||||
raise ValueError('Mat 4 mopt wrong format, byteswapping problem?')
|
||||
M, rest = divmod(data['mopt'], 1000) # order code
|
||||
if M not in (0, 1):
|
||||
warnings.warn("We do not support byte ordering '%s'; returned "
|
||||
"data may be corrupt" % order_codes[M],
|
||||
UserWarning, stacklevel=3)
|
||||
O, rest = divmod(rest, 100) # unused, should be 0
|
||||
if O != 0:
|
||||
raise ValueError('O in MOPT integer should be 0, wrong format?')
|
||||
P, rest = divmod(rest, 10) # data type code e.g miDOUBLE (see above)
|
||||
T = rest # matrix type code e.g., mxFULL_CLASS (see above)
|
||||
dims = (data['mrows'], data['ncols'])
|
||||
is_complex = data['imagf'] == 1
|
||||
dtype = self.dtypes[P]
|
||||
return VarHeader4(
|
||||
name,
|
||||
dtype,
|
||||
T,
|
||||
dims,
|
||||
is_complex)
|
||||
|
||||
def array_from_header(self, hdr, process=True):
|
||||
mclass = hdr.mclass
|
||||
if mclass == mxFULL_CLASS:
|
||||
arr = self.read_full_array(hdr)
|
||||
elif mclass == mxCHAR_CLASS:
|
||||
arr = self.read_char_array(hdr)
|
||||
if process and self.chars_as_strings:
|
||||
arr = chars_to_strings(arr)
|
||||
elif mclass == mxSPARSE_CLASS:
|
||||
# no current processing (below) makes sense for sparse
|
||||
return self.read_sparse_array(hdr)
|
||||
else:
|
||||
raise TypeError('No reader for class code %s' % mclass)
|
||||
if process and self.squeeze_me:
|
||||
return squeeze_element(arr)
|
||||
return arr
|
||||
|
||||
def read_sub_array(self, hdr, copy=True):
|
||||
''' Mat4 read using header `hdr` dtype and dims
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hdr : object
|
||||
object with attributes ``dtype``, ``dims``. dtype is assumed to be
|
||||
the correct endianness
|
||||
copy : bool, optional
|
||||
copies array before return if True (default True)
|
||||
(buffer is usually read only)
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr : ndarray
|
||||
of dtype given by `hdr` ``dtype`` and shape given by `hdr` ``dims``
|
||||
'''
|
||||
dt = hdr.dtype
|
||||
dims = hdr.dims
|
||||
num_bytes = dt.itemsize
|
||||
for d in dims:
|
||||
num_bytes *= d
|
||||
buffer = self.mat_stream.read(int(num_bytes))
|
||||
if len(buffer) != num_bytes:
|
||||
raise ValueError("Not enough bytes to read matrix '%s'; is this "
|
||||
"a badly-formed file? Consider listing matrices "
|
||||
"with `whosmat` and loading named matrices with "
|
||||
"`variable_names` kwarg to `loadmat`" % hdr.name)
|
||||
arr = np.ndarray(shape=dims,
|
||||
dtype=dt,
|
||||
buffer=buffer,
|
||||
order='F')
|
||||
if copy:
|
||||
arr = arr.copy()
|
||||
return arr
|
||||
|
||||
def read_full_array(self, hdr):
|
||||
''' Full (rather than sparse) matrix getter
|
||||
|
||||
Read matrix (array) can be real or complex
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hdr : ``VarHeader4`` instance
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr : ndarray
|
||||
complex array if ``hdr.is_complex`` is True, otherwise a real
|
||||
numeric array
|
||||
'''
|
||||
if hdr.is_complex:
|
||||
# avoid array copy to save memory
|
||||
res = self.read_sub_array(hdr, copy=False)
|
||||
res_j = self.read_sub_array(hdr, copy=False)
|
||||
return res + (res_j * 1j)
|
||||
return self.read_sub_array(hdr)
|
||||
|
||||
def read_char_array(self, hdr):
|
||||
''' latin-1 text matrix (char matrix) reader
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hdr : ``VarHeader4`` instance
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr : ndarray
|
||||
with dtype 'U1', shape given by `hdr` ``dims``
|
||||
'''
|
||||
arr = self.read_sub_array(hdr).astype(np.uint8)
|
||||
S = arr.tobytes().decode('latin-1')
|
||||
return np.ndarray(shape=hdr.dims,
|
||||
dtype=np.dtype('U1'),
|
||||
buffer=np.array(S)).copy()
|
||||
|
||||
def read_sparse_array(self, hdr):
|
||||
''' Read and return sparse matrix type
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hdr : ``VarHeader4`` instance
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr : ``scipy.sparse.coo_matrix``
|
||||
with dtype ``float`` and shape read from the sparse matrix data
|
||||
|
||||
Notes
|
||||
-----
|
||||
MATLAB 4 real sparse arrays are saved in a N+1 by 3 array format, where
|
||||
N is the number of non-zero values. Column 1 values [0:N] are the
|
||||
(1-based) row indices of the each non-zero value, column 2 [0:N] are the
|
||||
column indices, column 3 [0:N] are the (real) values. The last values
|
||||
[-1,0:2] of the rows, column indices are shape[0] and shape[1]
|
||||
respectively of the output matrix. The last value for the values column
|
||||
is a padding 0. mrows and ncols values from the header give the shape of
|
||||
the stored matrix, here [N+1, 3]. Complex data are saved as a 4 column
|
||||
matrix, where the fourth column contains the imaginary component; the
|
||||
last value is again 0. Complex sparse data do *not* have the header
|
||||
``imagf`` field set to True; the fact that the data are complex is only
|
||||
detectable because there are 4 storage columns.
|
||||
'''
|
||||
res = self.read_sub_array(hdr)
|
||||
tmp = res[:-1,:]
|
||||
# All numbers are float64 in Matlab, but SciPy sparse expects int shape
|
||||
dims = (int(res[-1,0]), int(res[-1,1]))
|
||||
I = np.ascontiguousarray(tmp[:,0],dtype='intc') # fixes byte order also
|
||||
J = np.ascontiguousarray(tmp[:,1],dtype='intc')
|
||||
I -= 1 # for 1-based indexing
|
||||
J -= 1
|
||||
if res.shape[1] == 3:
|
||||
V = np.ascontiguousarray(tmp[:,2],dtype='float')
|
||||
else:
|
||||
V = np.ascontiguousarray(tmp[:,2],dtype='complex')
|
||||
V.imag = tmp[:,3]
|
||||
return scipy.sparse.coo_matrix((V,(I,J)), dims)
|
||||
|
||||
def shape_from_header(self, hdr):
|
||||
'''Read the shape of the array described by the header.
|
||||
The file position after this call is unspecified.
|
||||
'''
|
||||
mclass = hdr.mclass
|
||||
if mclass == mxFULL_CLASS:
|
||||
shape = tuple(map(int, hdr.dims))
|
||||
elif mclass == mxCHAR_CLASS:
|
||||
shape = tuple(map(int, hdr.dims))
|
||||
if self.chars_as_strings:
|
||||
shape = shape[:-1]
|
||||
elif mclass == mxSPARSE_CLASS:
|
||||
dt = hdr.dtype
|
||||
dims = hdr.dims
|
||||
|
||||
if not (len(dims) == 2 and dims[0] >= 1 and dims[1] >= 1):
|
||||
return ()
|
||||
|
||||
# Read only the row and column counts
|
||||
self.mat_stream.seek(dt.itemsize * (dims[0] - 1), 1)
|
||||
rows = np.ndarray(shape=(), dtype=dt,
|
||||
buffer=self.mat_stream.read(dt.itemsize))
|
||||
self.mat_stream.seek(dt.itemsize * (dims[0] - 1), 1)
|
||||
cols = np.ndarray(shape=(), dtype=dt,
|
||||
buffer=self.mat_stream.read(dt.itemsize))
|
||||
|
||||
shape = (int(rows), int(cols))
|
||||
else:
|
||||
raise TypeError('No reader for class code %s' % mclass)
|
||||
|
||||
if self.squeeze_me:
|
||||
shape = tuple([x for x in shape if x != 1])
|
||||
return shape
|
||||
|
||||
|
||||
class MatFile4Reader(MatFileReader):
|
||||
''' Reader for Mat4 files '''
|
||||
@docfiller
|
||||
def __init__(self, mat_stream, *args, **kwargs):
|
||||
''' Initialize matlab 4 file reader
|
||||
|
||||
%(matstream_arg)s
|
||||
%(load_args)s
|
||||
'''
|
||||
super().__init__(mat_stream, *args, **kwargs)
|
||||
self._matrix_reader = None
|
||||
|
||||
def guess_byte_order(self):
|
||||
self.mat_stream.seek(0)
|
||||
mopt = read_dtype(self.mat_stream, np.dtype('i4'))
|
||||
self.mat_stream.seek(0)
|
||||
if mopt == 0:
|
||||
return '<'
|
||||
if mopt < 0 or mopt > 5000:
|
||||
# Number must have been byteswapped
|
||||
return SYS_LITTLE_ENDIAN and '>' or '<'
|
||||
# Not byteswapped
|
||||
return SYS_LITTLE_ENDIAN and '<' or '>'
|
||||
|
||||
def initialize_read(self):
|
||||
''' Run when beginning read of variables
|
||||
|
||||
Sets up readers from parameters in `self`
|
||||
'''
|
||||
self.dtypes = convert_dtypes(mdtypes_template, self.byte_order)
|
||||
self._matrix_reader = VarReader4(self)
|
||||
|
||||
def read_var_header(self):
|
||||
''' Read and return header, next position
|
||||
|
||||
Parameters
|
||||
----------
|
||||
None
|
||||
|
||||
Returns
|
||||
-------
|
||||
header : object
|
||||
object that can be passed to self.read_var_array, and that
|
||||
has attributes ``name`` and ``is_global``
|
||||
next_position : int
|
||||
position in stream of next variable
|
||||
'''
|
||||
hdr = self._matrix_reader.read_header()
|
||||
n = reduce(lambda x, y: x*y, hdr.dims, 1) # fast product
|
||||
remaining_bytes = hdr.dtype.itemsize * n
|
||||
if hdr.is_complex and not hdr.mclass == mxSPARSE_CLASS:
|
||||
remaining_bytes *= 2
|
||||
next_position = self.mat_stream.tell() + remaining_bytes
|
||||
return hdr, next_position
|
||||
|
||||
def read_var_array(self, header, process=True):
|
||||
''' Read array, given `header`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
header : header object
|
||||
object with fields defining variable header
|
||||
process : {True, False}, optional
|
||||
If True, apply recursive post-processing during loading of array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr : array
|
||||
array with post-processing applied or not according to
|
||||
`process`.
|
||||
'''
|
||||
return self._matrix_reader.array_from_header(header, process)
|
||||
|
||||
def get_variables(self, variable_names=None):
|
||||
''' get variables from stream as dictionary
|
||||
|
||||
Parameters
|
||||
----------
|
||||
variable_names : None or str or sequence of str, optional
|
||||
variable name, or sequence of variable names to get from Mat file /
|
||||
file stream. If None, then get all variables in file.
|
||||
'''
|
||||
if isinstance(variable_names, str):
|
||||
variable_names = [variable_names]
|
||||
elif variable_names is not None:
|
||||
variable_names = list(variable_names)
|
||||
self.mat_stream.seek(0)
|
||||
# set up variable reader
|
||||
self.initialize_read()
|
||||
mdict = {}
|
||||
while not self.end_of_stream():
|
||||
hdr, next_position = self.read_var_header()
|
||||
name = 'None' if hdr.name is None else hdr.name.decode('latin1')
|
||||
if variable_names is not None and name not in variable_names:
|
||||
self.mat_stream.seek(next_position)
|
||||
continue
|
||||
mdict[name] = self.read_var_array(hdr)
|
||||
self.mat_stream.seek(next_position)
|
||||
if variable_names is not None:
|
||||
variable_names.remove(name)
|
||||
if len(variable_names) == 0:
|
||||
break
|
||||
return mdict
|
||||
|
||||
def list_variables(self):
|
||||
''' list variables from stream '''
|
||||
self.mat_stream.seek(0)
|
||||
# set up variable reader
|
||||
self.initialize_read()
|
||||
vars = []
|
||||
while not self.end_of_stream():
|
||||
hdr, next_position = self.read_var_header()
|
||||
name = 'None' if hdr.name is None else hdr.name.decode('latin1')
|
||||
shape = self._matrix_reader.shape_from_header(hdr)
|
||||
info = mclass_info.get(hdr.mclass, 'unknown')
|
||||
vars.append((name, shape, info))
|
||||
|
||||
self.mat_stream.seek(next_position)
|
||||
return vars
|
||||
|
||||
|
||||
def arr_to_2d(arr, oned_as='row'):
|
||||
''' Make ``arr`` exactly two dimensional
|
||||
|
||||
If `arr` has more than 2 dimensions, raise a ValueError
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : array
|
||||
oned_as : {'row', 'column'}, optional
|
||||
Whether to reshape 1-D vectors as row vectors or column vectors.
|
||||
See documentation for ``matdims`` for more detail
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr2d : array
|
||||
2-D version of the array
|
||||
'''
|
||||
dims = matdims(arr, oned_as)
|
||||
if len(dims) > 2:
|
||||
raise ValueError('Matlab 4 files cannot save arrays with more than '
|
||||
'2 dimensions')
|
||||
return arr.reshape(dims)
|
||||
|
||||
|
||||
class VarWriter4:
|
||||
def __init__(self, file_writer):
|
||||
self.file_stream = file_writer.file_stream
|
||||
self.oned_as = file_writer.oned_as
|
||||
|
||||
def write_bytes(self, arr):
|
||||
self.file_stream.write(arr.tobytes(order='F'))
|
||||
|
||||
def write_string(self, s):
|
||||
self.file_stream.write(s)
|
||||
|
||||
def write_header(self, name, shape, P=miDOUBLE, T=mxFULL_CLASS, imagf=0):
|
||||
''' Write header for given data options
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
name of variable
|
||||
shape : sequence
|
||||
Shape of array as it will be read in matlab
|
||||
P : int, optional
|
||||
code for mat4 data type, one of ``miDOUBLE, miSINGLE, miINT32,
|
||||
miINT16, miUINT16, miUINT8``
|
||||
T : int, optional
|
||||
code for mat4 matrix class, one of ``mxFULL_CLASS, mxCHAR_CLASS,
|
||||
mxSPARSE_CLASS``
|
||||
imagf : int, optional
|
||||
flag indicating complex
|
||||
'''
|
||||
header = np.empty((), mdtypes_template['header'])
|
||||
M = not SYS_LITTLE_ENDIAN
|
||||
O = 0
|
||||
header['mopt'] = (M * 1000 +
|
||||
O * 100 +
|
||||
P * 10 +
|
||||
T)
|
||||
header['mrows'] = shape[0]
|
||||
header['ncols'] = shape[1]
|
||||
header['imagf'] = imagf
|
||||
header['namlen'] = len(name) + 1
|
||||
self.write_bytes(header)
|
||||
data = name + '\0'
|
||||
self.write_string(data.encode('latin1'))
|
||||
|
||||
def write(self, arr, name):
|
||||
''' Write matrix `arr`, with name `name`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : array_like
|
||||
array to write
|
||||
name : str
|
||||
name in matlab workspace
|
||||
'''
|
||||
# we need to catch sparse first, because np.asarray returns an
|
||||
# an object array for scipy.sparse
|
||||
if scipy.sparse.issparse(arr):
|
||||
self.write_sparse(arr, name)
|
||||
return
|
||||
arr = np.asarray(arr)
|
||||
dt = arr.dtype
|
||||
if not dt.isnative:
|
||||
arr = arr.astype(dt.newbyteorder('='))
|
||||
dtt = dt.type
|
||||
if dtt is np.object_:
|
||||
raise TypeError('Cannot save object arrays in Mat4')
|
||||
elif dtt is np.void:
|
||||
raise TypeError('Cannot save void type arrays')
|
||||
elif dtt in (np.str_, np.bytes_):
|
||||
self.write_char(arr, name)
|
||||
return
|
||||
self.write_numeric(arr, name)
|
||||
|
||||
def write_numeric(self, arr, name):
|
||||
arr = arr_to_2d(arr, self.oned_as)
|
||||
imagf = arr.dtype.kind == 'c'
|
||||
try:
|
||||
P = np_to_mtypes[arr.dtype.str[1:]]
|
||||
except KeyError:
|
||||
if imagf:
|
||||
arr = arr.astype('c128')
|
||||
else:
|
||||
arr = arr.astype('f8')
|
||||
P = miDOUBLE
|
||||
self.write_header(name,
|
||||
arr.shape,
|
||||
P=P,
|
||||
T=mxFULL_CLASS,
|
||||
imagf=imagf)
|
||||
if imagf:
|
||||
self.write_bytes(arr.real)
|
||||
self.write_bytes(arr.imag)
|
||||
else:
|
||||
self.write_bytes(arr)
|
||||
|
||||
def write_char(self, arr, name):
|
||||
if arr.dtype.type == np.str_ and arr.dtype.itemsize != np.dtype('U1').itemsize:
|
||||
arr = arr_to_chars(arr)
|
||||
arr = arr_to_2d(arr, self.oned_as)
|
||||
dims = arr.shape
|
||||
self.write_header(
|
||||
name,
|
||||
dims,
|
||||
P=miUINT8,
|
||||
T=mxCHAR_CLASS)
|
||||
if arr.dtype.kind == 'U':
|
||||
# Recode unicode to latin1
|
||||
n_chars = math.prod(dims)
|
||||
st_arr = np.ndarray(shape=(),
|
||||
dtype=arr_dtype_number(arr, n_chars),
|
||||
buffer=arr)
|
||||
st = st_arr.item().encode('latin-1')
|
||||
arr = np.ndarray(shape=dims, dtype='S1', buffer=st)
|
||||
self.write_bytes(arr)
|
||||
|
||||
def write_sparse(self, arr, name):
|
||||
''' Sparse matrices are 2-D
|
||||
|
||||
See docstring for VarReader4.read_sparse_array
|
||||
'''
|
||||
A = arr.tocoo() # convert to sparse COO format (ijv)
|
||||
imagf = A.dtype.kind == 'c'
|
||||
ijv = np.zeros((A.nnz + 1, 3+imagf), dtype='f8')
|
||||
ijv[:-1,0] = A.row
|
||||
ijv[:-1,1] = A.col
|
||||
ijv[:-1,0:2] += 1 # 1 based indexing
|
||||
if imagf:
|
||||
ijv[:-1,2] = A.data.real
|
||||
ijv[:-1,3] = A.data.imag
|
||||
else:
|
||||
ijv[:-1,2] = A.data
|
||||
ijv[-1,0:2] = A.shape
|
||||
self.write_header(
|
||||
name,
|
||||
ijv.shape,
|
||||
P=miDOUBLE,
|
||||
T=mxSPARSE_CLASS)
|
||||
self.write_bytes(ijv)
|
||||
|
||||
|
||||
class MatFile4Writer:
|
||||
''' Class for writing matlab 4 format files '''
|
||||
def __init__(self, file_stream, oned_as=None):
|
||||
self.file_stream = file_stream
|
||||
if oned_as is None:
|
||||
oned_as = 'row'
|
||||
self.oned_as = oned_as
|
||||
self._matrix_writer = None
|
||||
|
||||
def put_variables(self, mdict, write_header=None):
|
||||
''' Write variables in `mdict` to stream
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mdict : mapping
|
||||
mapping with method ``items`` return name, contents pairs
|
||||
where ``name`` which will appeak in the matlab workspace in
|
||||
file load, and ``contents`` is something writeable to a
|
||||
matlab file, such as a NumPy array.
|
||||
write_header : {None, True, False}
|
||||
If True, then write the matlab file header before writing the
|
||||
variables. If None (the default) then write the file header
|
||||
if we are at position 0 in the stream. By setting False
|
||||
here, and setting the stream position to the end of the file,
|
||||
you can append variables to a matlab file
|
||||
'''
|
||||
# there is no header for a matlab 4 mat file, so we ignore the
|
||||
# ``write_header`` input argument. It's there for compatibility
|
||||
# with the matlab 5 version of this method
|
||||
self._matrix_writer = VarWriter4(self)
|
||||
for name, var in mdict.items():
|
||||
self._matrix_writer.write(var, name)
|
895
venv/lib/python3.12/site-packages/scipy/io/matlab/_mio5.py
Normal file
895
venv/lib/python3.12/site-packages/scipy/io/matlab/_mio5.py
Normal file
@ -0,0 +1,895 @@
|
||||
''' Classes for read / write of matlab (TM) 5 files
|
||||
|
||||
The matfile specification last found here:
|
||||
|
||||
https://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf
|
||||
|
||||
(as of December 5 2008)
|
||||
|
||||
=================================
|
||||
Note on functions and mat files
|
||||
=================================
|
||||
|
||||
The document above does not give any hints as to the storage of matlab
|
||||
function handles, or anonymous function handles. I had, therefore, to
|
||||
guess the format of matlab arrays of ``mxFUNCTION_CLASS`` and
|
||||
``mxOPAQUE_CLASS`` by looking at example mat files.
|
||||
|
||||
``mxFUNCTION_CLASS`` stores all types of matlab functions. It seems to
|
||||
contain a struct matrix with a set pattern of fields. For anonymous
|
||||
functions, a sub-fields of one of these fields seems to contain the
|
||||
well-named ``mxOPAQUE_CLASS``. This seems to contain:
|
||||
|
||||
* array flags as for any matlab matrix
|
||||
* 3 int8 strings
|
||||
* a matrix
|
||||
|
||||
It seems that whenever the mat file contains a ``mxOPAQUE_CLASS``
|
||||
instance, there is also an un-named matrix (name == '') at the end of
|
||||
the mat file. I'll call this the ``__function_workspace__`` matrix.
|
||||
|
||||
When I saved two anonymous functions in a mat file, or appended another
|
||||
anonymous function to the mat file, there was still only one
|
||||
``__function_workspace__`` un-named matrix at the end, but larger than
|
||||
that for a mat file with a single anonymous function, suggesting that
|
||||
the workspaces for the two functions had been merged.
|
||||
|
||||
The ``__function_workspace__`` matrix appears to be of double class
|
||||
(``mxCLASS_DOUBLE``), but stored as uint8, the memory for which is in
|
||||
the format of a mini .mat file, without the first 124 bytes of the file
|
||||
header (the description and the subsystem_offset), but with the version
|
||||
U2 bytes, and the S2 endian test bytes. There follow 4 zero bytes,
|
||||
presumably for 8 byte padding, and then a series of ``miMATRIX``
|
||||
entries, as in a standard mat file. The ``miMATRIX`` entries appear to
|
||||
be series of un-named (name == '') matrices, and may also contain arrays
|
||||
of this same mini-mat format.
|
||||
|
||||
I guess that:
|
||||
|
||||
* saving an anonymous function back to a mat file will need the
|
||||
associated ``__function_workspace__`` matrix saved as well for the
|
||||
anonymous function to work correctly.
|
||||
* appending to a mat file that has a ``__function_workspace__`` would
|
||||
involve first pulling off this workspace, appending, checking whether
|
||||
there were any more anonymous functions appended, and then somehow
|
||||
merging the relevant workspaces, and saving at the end of the mat
|
||||
file.
|
||||
|
||||
The mat files I was playing with are in ``tests/data``:
|
||||
|
||||
* sqr.mat
|
||||
* parabola.mat
|
||||
* some_functions.mat
|
||||
|
||||
See ``tests/test_mio.py:test_mio_funcs.py`` for the debugging
|
||||
script I was working with.
|
||||
|
||||
Small fragments of current code adapted from matfile.py by Heiko
|
||||
Henkelmann; parts of the code for simplify_cells=True adapted from
|
||||
http://blog.nephics.com/2019/08/28/better-loadmat-for-scipy/.
|
||||
'''
|
||||
|
||||
import math
|
||||
import os
|
||||
import time
|
||||
import sys
|
||||
import zlib
|
||||
|
||||
from io import BytesIO
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
import scipy.sparse
|
||||
|
||||
from ._byteordercodes import native_code, swapped_code
|
||||
|
||||
from ._miobase import (MatFileReader, docfiller, matdims, read_dtype,
|
||||
arr_to_chars, arr_dtype_number, MatWriteError,
|
||||
MatReadError, MatReadWarning)
|
||||
|
||||
# Reader object for matlab 5 format variables
|
||||
from ._mio5_utils import VarReader5
|
||||
|
||||
# Constants and helper objects
|
||||
from ._mio5_params import (MatlabObject, MatlabFunction, MDTYPES, NP_TO_MTYPES,
|
||||
NP_TO_MXTYPES, miCOMPRESSED, miMATRIX, miINT8,
|
||||
miUTF8, miUINT32, mxCELL_CLASS, mxSTRUCT_CLASS,
|
||||
mxOBJECT_CLASS, mxCHAR_CLASS, mxSPARSE_CLASS,
|
||||
mxDOUBLE_CLASS, mclass_info, mat_struct)
|
||||
|
||||
from ._streams import ZlibInputStream
|
||||
|
||||
|
||||
def _has_struct(elem):
|
||||
"""Determine if elem is an array and if first array item is a struct."""
|
||||
return (isinstance(elem, np.ndarray) and (elem.size > 0) and (elem.ndim > 0) and
|
||||
isinstance(elem[0], mat_struct))
|
||||
|
||||
|
||||
def _inspect_cell_array(ndarray):
|
||||
"""Construct lists from cell arrays (loaded as numpy ndarrays), recursing
|
||||
into items if they contain mat_struct objects."""
|
||||
elem_list = []
|
||||
for sub_elem in ndarray:
|
||||
if isinstance(sub_elem, mat_struct):
|
||||
elem_list.append(_matstruct_to_dict(sub_elem))
|
||||
elif _has_struct(sub_elem):
|
||||
elem_list.append(_inspect_cell_array(sub_elem))
|
||||
else:
|
||||
elem_list.append(sub_elem)
|
||||
return elem_list
|
||||
|
||||
|
||||
def _matstruct_to_dict(matobj):
|
||||
"""Construct nested dicts from mat_struct objects."""
|
||||
d = {}
|
||||
for f in matobj._fieldnames:
|
||||
elem = matobj.__dict__[f]
|
||||
if isinstance(elem, mat_struct):
|
||||
d[f] = _matstruct_to_dict(elem)
|
||||
elif _has_struct(elem):
|
||||
d[f] = _inspect_cell_array(elem)
|
||||
else:
|
||||
d[f] = elem
|
||||
return d
|
||||
|
||||
|
||||
def _simplify_cells(d):
|
||||
"""Convert mat objects in dict to nested dicts."""
|
||||
for key in d:
|
||||
if isinstance(d[key], mat_struct):
|
||||
d[key] = _matstruct_to_dict(d[key])
|
||||
elif _has_struct(d[key]):
|
||||
d[key] = _inspect_cell_array(d[key])
|
||||
return d
|
||||
|
||||
|
||||
class MatFile5Reader(MatFileReader):
|
||||
''' Reader for Mat 5 mat files
|
||||
Adds the following attribute to base class
|
||||
|
||||
uint16_codec - char codec to use for uint16 char arrays
|
||||
(defaults to system default codec)
|
||||
|
||||
Uses variable reader that has the following standard interface (see
|
||||
abstract class in ``miobase``::
|
||||
|
||||
__init__(self, file_reader)
|
||||
read_header(self)
|
||||
array_from_header(self)
|
||||
|
||||
and added interface::
|
||||
|
||||
set_stream(self, stream)
|
||||
read_full_tag(self)
|
||||
|
||||
'''
|
||||
@docfiller
|
||||
def __init__(self,
|
||||
mat_stream,
|
||||
byte_order=None,
|
||||
mat_dtype=False,
|
||||
squeeze_me=False,
|
||||
chars_as_strings=True,
|
||||
matlab_compatible=False,
|
||||
struct_as_record=True,
|
||||
verify_compressed_data_integrity=True,
|
||||
uint16_codec=None,
|
||||
simplify_cells=False):
|
||||
'''Initializer for matlab 5 file format reader
|
||||
|
||||
%(matstream_arg)s
|
||||
%(load_args)s
|
||||
%(struct_arg)s
|
||||
uint16_codec : {None, string}
|
||||
Set codec to use for uint16 char arrays (e.g., 'utf-8').
|
||||
Use system default codec if None
|
||||
'''
|
||||
super().__init__(
|
||||
mat_stream,
|
||||
byte_order,
|
||||
mat_dtype,
|
||||
squeeze_me,
|
||||
chars_as_strings,
|
||||
matlab_compatible,
|
||||
struct_as_record,
|
||||
verify_compressed_data_integrity,
|
||||
simplify_cells)
|
||||
# Set uint16 codec
|
||||
if not uint16_codec:
|
||||
uint16_codec = sys.getdefaultencoding()
|
||||
self.uint16_codec = uint16_codec
|
||||
# placeholders for readers - see initialize_read method
|
||||
self._file_reader = None
|
||||
self._matrix_reader = None
|
||||
|
||||
def guess_byte_order(self):
|
||||
''' Guess byte order.
|
||||
Sets stream pointer to 0'''
|
||||
self.mat_stream.seek(126)
|
||||
mi = self.mat_stream.read(2)
|
||||
self.mat_stream.seek(0)
|
||||
return mi == b'IM' and '<' or '>'
|
||||
|
||||
def read_file_header(self):
|
||||
''' Read in mat 5 file header '''
|
||||
hdict = {}
|
||||
hdr_dtype = MDTYPES[self.byte_order]['dtypes']['file_header']
|
||||
hdr = read_dtype(self.mat_stream, hdr_dtype)
|
||||
hdict['__header__'] = hdr['description'].item().strip(b' \t\n\000')
|
||||
v_major = hdr['version'] >> 8
|
||||
v_minor = hdr['version'] & 0xFF
|
||||
hdict['__version__'] = '%d.%d' % (v_major, v_minor)
|
||||
return hdict
|
||||
|
||||
def initialize_read(self):
|
||||
''' Run when beginning read of variables
|
||||
|
||||
Sets up readers from parameters in `self`
|
||||
'''
|
||||
# reader for top level stream. We need this extra top-level
|
||||
# reader because we use the matrix_reader object to contain
|
||||
# compressed matrices (so they have their own stream)
|
||||
self._file_reader = VarReader5(self)
|
||||
# reader for matrix streams
|
||||
self._matrix_reader = VarReader5(self)
|
||||
|
||||
def read_var_header(self):
|
||||
''' Read header, return header, next position
|
||||
|
||||
Header has to define at least .name and .is_global
|
||||
|
||||
Parameters
|
||||
----------
|
||||
None
|
||||
|
||||
Returns
|
||||
-------
|
||||
header : object
|
||||
object that can be passed to self.read_var_array, and that
|
||||
has attributes .name and .is_global
|
||||
next_position : int
|
||||
position in stream of next variable
|
||||
'''
|
||||
mdtype, byte_count = self._file_reader.read_full_tag()
|
||||
if not byte_count > 0:
|
||||
raise ValueError("Did not read any bytes")
|
||||
next_pos = self.mat_stream.tell() + byte_count
|
||||
if mdtype == miCOMPRESSED:
|
||||
# Make new stream from compressed data
|
||||
stream = ZlibInputStream(self.mat_stream, byte_count)
|
||||
self._matrix_reader.set_stream(stream)
|
||||
check_stream_limit = self.verify_compressed_data_integrity
|
||||
mdtype, byte_count = self._matrix_reader.read_full_tag()
|
||||
else:
|
||||
check_stream_limit = False
|
||||
self._matrix_reader.set_stream(self.mat_stream)
|
||||
if not mdtype == miMATRIX:
|
||||
raise TypeError('Expecting miMATRIX type here, got %d' % mdtype)
|
||||
header = self._matrix_reader.read_header(check_stream_limit)
|
||||
return header, next_pos
|
||||
|
||||
def read_var_array(self, header, process=True):
|
||||
''' Read array, given `header`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
header : header object
|
||||
object with fields defining variable header
|
||||
process : {True, False} bool, optional
|
||||
If True, apply recursive post-processing during loading of
|
||||
array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr : array
|
||||
array with post-processing applied or not according to
|
||||
`process`.
|
||||
'''
|
||||
return self._matrix_reader.array_from_header(header, process)
|
||||
|
||||
def get_variables(self, variable_names=None):
|
||||
''' get variables from stream as dictionary
|
||||
|
||||
variable_names - optional list of variable names to get
|
||||
|
||||
If variable_names is None, then get all variables in file
|
||||
'''
|
||||
if isinstance(variable_names, str):
|
||||
variable_names = [variable_names]
|
||||
elif variable_names is not None:
|
||||
variable_names = list(variable_names)
|
||||
|
||||
self.mat_stream.seek(0)
|
||||
# Here we pass all the parameters in self to the reading objects
|
||||
self.initialize_read()
|
||||
mdict = self.read_file_header()
|
||||
mdict['__globals__'] = []
|
||||
while not self.end_of_stream():
|
||||
hdr, next_position = self.read_var_header()
|
||||
name = 'None' if hdr.name is None else hdr.name.decode('latin1')
|
||||
if name in mdict:
|
||||
msg = (
|
||||
f'Duplicate variable name "{name}" in stream'
|
||||
" - replacing previous with new\nConsider"
|
||||
"scipy.io.matlab._mio5.varmats_from_mat to split "
|
||||
"file into single variable files"
|
||||
)
|
||||
warnings.warn(msg, MatReadWarning, stacklevel=2)
|
||||
if name == '':
|
||||
# can only be a matlab 7 function workspace
|
||||
name = '__function_workspace__'
|
||||
# We want to keep this raw because mat_dtype processing
|
||||
# will break the format (uint8 as mxDOUBLE_CLASS)
|
||||
process = False
|
||||
else:
|
||||
process = True
|
||||
if variable_names is not None and name not in variable_names:
|
||||
self.mat_stream.seek(next_position)
|
||||
continue
|
||||
try:
|
||||
res = self.read_var_array(hdr, process)
|
||||
except MatReadError as err:
|
||||
warnings.warn(
|
||||
f'Unreadable variable "{name}", because "{err}"',
|
||||
Warning, stacklevel=2)
|
||||
res = "Read error: %s" % err
|
||||
self.mat_stream.seek(next_position)
|
||||
mdict[name] = res
|
||||
if hdr.is_global:
|
||||
mdict['__globals__'].append(name)
|
||||
if variable_names is not None:
|
||||
variable_names.remove(name)
|
||||
if len(variable_names) == 0:
|
||||
break
|
||||
if self.simplify_cells:
|
||||
return _simplify_cells(mdict)
|
||||
else:
|
||||
return mdict
|
||||
|
||||
def list_variables(self):
|
||||
''' list variables from stream '''
|
||||
self.mat_stream.seek(0)
|
||||
# Here we pass all the parameters in self to the reading objects
|
||||
self.initialize_read()
|
||||
self.read_file_header()
|
||||
vars = []
|
||||
while not self.end_of_stream():
|
||||
hdr, next_position = self.read_var_header()
|
||||
name = 'None' if hdr.name is None else hdr.name.decode('latin1')
|
||||
if name == '':
|
||||
# can only be a matlab 7 function workspace
|
||||
name = '__function_workspace__'
|
||||
|
||||
shape = self._matrix_reader.shape_from_header(hdr)
|
||||
if hdr.is_logical:
|
||||
info = 'logical'
|
||||
else:
|
||||
info = mclass_info.get(hdr.mclass, 'unknown')
|
||||
vars.append((name, shape, info))
|
||||
|
||||
self.mat_stream.seek(next_position)
|
||||
return vars
|
||||
|
||||
|
||||
def varmats_from_mat(file_obj):
|
||||
""" Pull variables out of mat 5 file as a sequence of mat file objects
|
||||
|
||||
This can be useful with a difficult mat file, containing unreadable
|
||||
variables. This routine pulls the variables out in raw form and puts them,
|
||||
unread, back into a file stream for saving or reading. Another use is the
|
||||
pathological case where there is more than one variable of the same name in
|
||||
the file; this routine returns the duplicates, whereas the standard reader
|
||||
will overwrite duplicates in the returned dictionary.
|
||||
|
||||
The file pointer in `file_obj` will be undefined. File pointers for the
|
||||
returned file-like objects are set at 0.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file_obj : file-like
|
||||
file object containing mat file
|
||||
|
||||
Returns
|
||||
-------
|
||||
named_mats : list
|
||||
list contains tuples of (name, BytesIO) where BytesIO is a file-like
|
||||
object containing mat file contents as for a single variable. The
|
||||
BytesIO contains a string with the original header and a single var. If
|
||||
``var_file_obj`` is an individual BytesIO instance, then save as a mat
|
||||
file with something like ``open('test.mat',
|
||||
'wb').write(var_file_obj.read())``
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import scipy.io
|
||||
>>> import numpy as np
|
||||
>>> from io import BytesIO
|
||||
>>> from scipy.io.matlab._mio5 import varmats_from_mat
|
||||
>>> mat_fileobj = BytesIO()
|
||||
>>> scipy.io.savemat(mat_fileobj, {'b': np.arange(10), 'a': 'a string'})
|
||||
>>> varmats = varmats_from_mat(mat_fileobj)
|
||||
>>> sorted([name for name, str_obj in varmats])
|
||||
['a', 'b']
|
||||
"""
|
||||
rdr = MatFile5Reader(file_obj)
|
||||
file_obj.seek(0)
|
||||
# Raw read of top-level file header
|
||||
hdr_len = MDTYPES[native_code]['dtypes']['file_header'].itemsize
|
||||
raw_hdr = file_obj.read(hdr_len)
|
||||
# Initialize variable reading
|
||||
file_obj.seek(0)
|
||||
rdr.initialize_read()
|
||||
rdr.read_file_header()
|
||||
next_position = file_obj.tell()
|
||||
named_mats = []
|
||||
while not rdr.end_of_stream():
|
||||
start_position = next_position
|
||||
hdr, next_position = rdr.read_var_header()
|
||||
name = 'None' if hdr.name is None else hdr.name.decode('latin1')
|
||||
# Read raw variable string
|
||||
file_obj.seek(start_position)
|
||||
byte_count = next_position - start_position
|
||||
var_str = file_obj.read(byte_count)
|
||||
# write to stringio object
|
||||
out_obj = BytesIO()
|
||||
out_obj.write(raw_hdr)
|
||||
out_obj.write(var_str)
|
||||
out_obj.seek(0)
|
||||
named_mats.append((name, out_obj))
|
||||
return named_mats
|
||||
|
||||
|
||||
class EmptyStructMarker:
|
||||
""" Class to indicate presence of empty matlab struct on output """
|
||||
|
||||
|
||||
def to_writeable(source):
|
||||
''' Convert input object ``source`` to something we can write
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : object
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr : None or ndarray or EmptyStructMarker
|
||||
If `source` cannot be converted to something we can write to a matfile,
|
||||
return None. If `source` is equivalent to an empty dictionary, return
|
||||
``EmptyStructMarker``. Otherwise return `source` converted to an
|
||||
ndarray with contents for writing to matfile.
|
||||
'''
|
||||
if isinstance(source, np.ndarray):
|
||||
return source
|
||||
if source is None:
|
||||
return None
|
||||
if hasattr(source, "__array__"):
|
||||
return np.asarray(source)
|
||||
# Objects that implement mappings
|
||||
is_mapping = (hasattr(source, 'keys') and hasattr(source, 'values') and
|
||||
hasattr(source, 'items'))
|
||||
# Objects that don't implement mappings, but do have dicts
|
||||
if isinstance(source, np.generic):
|
||||
# NumPy scalars are never mappings (PyPy issue workaround)
|
||||
pass
|
||||
elif not is_mapping and hasattr(source, '__dict__'):
|
||||
source = {key: value for key, value in source.__dict__.items()
|
||||
if not key.startswith('_')}
|
||||
is_mapping = True
|
||||
if is_mapping:
|
||||
dtype = []
|
||||
values = []
|
||||
for field, value in source.items():
|
||||
if (isinstance(field, str) and
|
||||
field[0] not in '_0123456789'):
|
||||
dtype.append((str(field), object))
|
||||
values.append(value)
|
||||
if dtype:
|
||||
return np.array([tuple(values)], dtype)
|
||||
else:
|
||||
return EmptyStructMarker
|
||||
# Next try and convert to an array
|
||||
try:
|
||||
narr = np.asanyarray(source)
|
||||
except ValueError:
|
||||
narr = np.asanyarray(source, dtype=object)
|
||||
if narr.dtype.type in (object, np.object_) and \
|
||||
narr.shape == () and narr == source:
|
||||
# No interesting conversion possible
|
||||
return None
|
||||
return narr
|
||||
|
||||
|
||||
# Native byte ordered dtypes for convenience for writers
|
||||
NDT_FILE_HDR = MDTYPES[native_code]['dtypes']['file_header']
|
||||
NDT_TAG_FULL = MDTYPES[native_code]['dtypes']['tag_full']
|
||||
NDT_TAG_SMALL = MDTYPES[native_code]['dtypes']['tag_smalldata']
|
||||
NDT_ARRAY_FLAGS = MDTYPES[native_code]['dtypes']['array_flags']
|
||||
|
||||
|
||||
class VarWriter5:
|
||||
''' Generic matlab matrix writing class '''
|
||||
mat_tag = np.zeros((), NDT_TAG_FULL)
|
||||
mat_tag['mdtype'] = miMATRIX
|
||||
|
||||
def __init__(self, file_writer):
|
||||
self.file_stream = file_writer.file_stream
|
||||
self.unicode_strings = file_writer.unicode_strings
|
||||
self.long_field_names = file_writer.long_field_names
|
||||
self.oned_as = file_writer.oned_as
|
||||
# These are used for top level writes, and unset after
|
||||
self._var_name = None
|
||||
self._var_is_global = False
|
||||
|
||||
def write_bytes(self, arr):
|
||||
self.file_stream.write(arr.tobytes(order='F'))
|
||||
|
||||
def write_string(self, s):
|
||||
self.file_stream.write(s)
|
||||
|
||||
def write_element(self, arr, mdtype=None):
|
||||
''' write tag and data '''
|
||||
if mdtype is None:
|
||||
mdtype = NP_TO_MTYPES[arr.dtype.str[1:]]
|
||||
# Array needs to be in native byte order
|
||||
if arr.dtype.byteorder == swapped_code:
|
||||
arr = arr.byteswap().view(arr.dtype.newbyteorder())
|
||||
byte_count = arr.size*arr.itemsize
|
||||
if byte_count <= 4:
|
||||
self.write_smalldata_element(arr, mdtype, byte_count)
|
||||
else:
|
||||
self.write_regular_element(arr, mdtype, byte_count)
|
||||
|
||||
def write_smalldata_element(self, arr, mdtype, byte_count):
|
||||
# write tag with embedded data
|
||||
tag = np.zeros((), NDT_TAG_SMALL)
|
||||
tag['byte_count_mdtype'] = (byte_count << 16) + mdtype
|
||||
# if arr.tobytes is < 4, the element will be zero-padded as needed.
|
||||
tag['data'] = arr.tobytes(order='F')
|
||||
self.write_bytes(tag)
|
||||
|
||||
def write_regular_element(self, arr, mdtype, byte_count):
|
||||
# write tag, data
|
||||
tag = np.zeros((), NDT_TAG_FULL)
|
||||
tag['mdtype'] = mdtype
|
||||
tag['byte_count'] = byte_count
|
||||
self.write_bytes(tag)
|
||||
self.write_bytes(arr)
|
||||
# pad to next 64-bit boundary
|
||||
bc_mod_8 = byte_count % 8
|
||||
if bc_mod_8:
|
||||
self.file_stream.write(b'\x00' * (8-bc_mod_8))
|
||||
|
||||
def write_header(self,
|
||||
shape,
|
||||
mclass,
|
||||
is_complex=False,
|
||||
is_logical=False,
|
||||
nzmax=0):
|
||||
''' Write header for given data options
|
||||
shape : sequence
|
||||
array shape
|
||||
mclass - mat5 matrix class
|
||||
is_complex - True if matrix is complex
|
||||
is_logical - True if matrix is logical
|
||||
nzmax - max non zero elements for sparse arrays
|
||||
|
||||
We get the name and the global flag from the object, and reset
|
||||
them to defaults after we've used them
|
||||
'''
|
||||
# get name and is_global from one-shot object store
|
||||
name = self._var_name
|
||||
is_global = self._var_is_global
|
||||
# initialize the top-level matrix tag, store position
|
||||
self._mat_tag_pos = self.file_stream.tell()
|
||||
self.write_bytes(self.mat_tag)
|
||||
# write array flags (complex, global, logical, class, nzmax)
|
||||
af = np.zeros((), NDT_ARRAY_FLAGS)
|
||||
af['data_type'] = miUINT32
|
||||
af['byte_count'] = 8
|
||||
flags = is_complex << 3 | is_global << 2 | is_logical << 1
|
||||
af['flags_class'] = mclass | flags << 8
|
||||
af['nzmax'] = nzmax
|
||||
self.write_bytes(af)
|
||||
# shape
|
||||
self.write_element(np.array(shape, dtype='i4'))
|
||||
# write name
|
||||
name = np.asarray(name)
|
||||
if name == '': # empty string zero-terminated
|
||||
self.write_smalldata_element(name, miINT8, 0)
|
||||
else:
|
||||
self.write_element(name, miINT8)
|
||||
# reset the one-shot store to defaults
|
||||
self._var_name = ''
|
||||
self._var_is_global = False
|
||||
|
||||
def update_matrix_tag(self, start_pos):
|
||||
curr_pos = self.file_stream.tell()
|
||||
self.file_stream.seek(start_pos)
|
||||
byte_count = curr_pos - start_pos - 8
|
||||
if byte_count >= 2**32:
|
||||
raise MatWriteError("Matrix too large to save with Matlab "
|
||||
"5 format")
|
||||
self.mat_tag['byte_count'] = byte_count
|
||||
self.write_bytes(self.mat_tag)
|
||||
self.file_stream.seek(curr_pos)
|
||||
|
||||
def write_top(self, arr, name, is_global):
|
||||
""" Write variable at top level of mat file
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : array_like
|
||||
array-like object to create writer for
|
||||
name : str, optional
|
||||
name as it will appear in matlab workspace
|
||||
default is empty string
|
||||
is_global : {False, True}, optional
|
||||
whether variable will be global on load into matlab
|
||||
"""
|
||||
# these are set before the top-level header write, and unset at
|
||||
# the end of the same write, because they do not apply for lower levels
|
||||
self._var_is_global = is_global
|
||||
self._var_name = name
|
||||
# write the header and data
|
||||
self.write(arr)
|
||||
|
||||
def write(self, arr):
|
||||
''' Write `arr` to stream at top and sub levels
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : array_like
|
||||
array-like object to create writer for
|
||||
'''
|
||||
# store position, so we can update the matrix tag
|
||||
mat_tag_pos = self.file_stream.tell()
|
||||
# First check if these are sparse
|
||||
if scipy.sparse.issparse(arr):
|
||||
self.write_sparse(arr)
|
||||
self.update_matrix_tag(mat_tag_pos)
|
||||
return
|
||||
# Try to convert things that aren't arrays
|
||||
narr = to_writeable(arr)
|
||||
if narr is None:
|
||||
raise TypeError(f'Could not convert {arr} (type {type(arr)}) to array')
|
||||
if isinstance(narr, MatlabObject):
|
||||
self.write_object(narr)
|
||||
elif isinstance(narr, MatlabFunction):
|
||||
raise MatWriteError('Cannot write matlab functions')
|
||||
elif narr is EmptyStructMarker: # empty struct array
|
||||
self.write_empty_struct()
|
||||
elif narr.dtype.fields: # struct array
|
||||
self.write_struct(narr)
|
||||
elif narr.dtype.hasobject: # cell array
|
||||
self.write_cells(narr)
|
||||
elif narr.dtype.kind in ('U', 'S'):
|
||||
if self.unicode_strings:
|
||||
codec = 'UTF8'
|
||||
else:
|
||||
codec = 'ascii'
|
||||
self.write_char(narr, codec)
|
||||
else:
|
||||
self.write_numeric(narr)
|
||||
self.update_matrix_tag(mat_tag_pos)
|
||||
|
||||
def write_numeric(self, arr):
|
||||
imagf = arr.dtype.kind == 'c'
|
||||
logif = arr.dtype.kind == 'b'
|
||||
try:
|
||||
mclass = NP_TO_MXTYPES[arr.dtype.str[1:]]
|
||||
except KeyError:
|
||||
# No matching matlab type, probably complex256 / float128 / float96
|
||||
# Cast data to complex128 / float64.
|
||||
if imagf:
|
||||
arr = arr.astype('c128')
|
||||
elif logif:
|
||||
arr = arr.astype('i1') # Should only contain 0/1
|
||||
else:
|
||||
arr = arr.astype('f8')
|
||||
mclass = mxDOUBLE_CLASS
|
||||
self.write_header(matdims(arr, self.oned_as),
|
||||
mclass,
|
||||
is_complex=imagf,
|
||||
is_logical=logif)
|
||||
if imagf:
|
||||
self.write_element(arr.real)
|
||||
self.write_element(arr.imag)
|
||||
else:
|
||||
self.write_element(arr)
|
||||
|
||||
def write_char(self, arr, codec='ascii'):
|
||||
''' Write string array `arr` with given `codec`
|
||||
'''
|
||||
if arr.size == 0 or np.all(arr == ''):
|
||||
# This an empty string array or a string array containing
|
||||
# only empty strings. Matlab cannot distinguish between a
|
||||
# string array that is empty, and a string array containing
|
||||
# only empty strings, because it stores strings as arrays of
|
||||
# char. There is no way of having an array of char that is
|
||||
# not empty, but contains an empty string. We have to
|
||||
# special-case the array-with-empty-strings because even
|
||||
# empty strings have zero padding, which would otherwise
|
||||
# appear in matlab as a string with a space.
|
||||
shape = (0,) * np.max([arr.ndim, 2])
|
||||
self.write_header(shape, mxCHAR_CLASS)
|
||||
self.write_smalldata_element(arr, miUTF8, 0)
|
||||
return
|
||||
# non-empty string.
|
||||
#
|
||||
# Convert to char array
|
||||
arr = arr_to_chars(arr)
|
||||
# We have to write the shape directly, because we are going
|
||||
# recode the characters, and the resulting stream of chars
|
||||
# may have a different length
|
||||
shape = arr.shape
|
||||
self.write_header(shape, mxCHAR_CLASS)
|
||||
if arr.dtype.kind == 'U' and arr.size:
|
||||
# Make one long string from all the characters. We need to
|
||||
# transpose here, because we're flattening the array, before
|
||||
# we write the bytes. The bytes have to be written in
|
||||
# Fortran order.
|
||||
n_chars = math.prod(shape)
|
||||
st_arr = np.ndarray(shape=(),
|
||||
dtype=arr_dtype_number(arr, n_chars),
|
||||
buffer=arr.T.copy()) # Fortran order
|
||||
# Recode with codec to give byte string
|
||||
st = st_arr.item().encode(codec)
|
||||
# Reconstruct as 1-D byte array
|
||||
arr = np.ndarray(shape=(len(st),),
|
||||
dtype='S1',
|
||||
buffer=st)
|
||||
self.write_element(arr, mdtype=miUTF8)
|
||||
|
||||
def write_sparse(self, arr):
|
||||
''' Sparse matrices are 2D
|
||||
'''
|
||||
A = arr.tocsc() # convert to sparse CSC format
|
||||
A.sort_indices() # MATLAB expects sorted row indices
|
||||
is_complex = (A.dtype.kind == 'c')
|
||||
is_logical = (A.dtype.kind == 'b')
|
||||
nz = A.nnz
|
||||
self.write_header(matdims(arr, self.oned_as),
|
||||
mxSPARSE_CLASS,
|
||||
is_complex=is_complex,
|
||||
is_logical=is_logical,
|
||||
# matlab won't load file with 0 nzmax
|
||||
nzmax=1 if nz == 0 else nz)
|
||||
self.write_element(A.indices.astype('i4'))
|
||||
self.write_element(A.indptr.astype('i4'))
|
||||
self.write_element(A.data.real)
|
||||
if is_complex:
|
||||
self.write_element(A.data.imag)
|
||||
|
||||
def write_cells(self, arr):
|
||||
self.write_header(matdims(arr, self.oned_as),
|
||||
mxCELL_CLASS)
|
||||
# loop over data, column major
|
||||
A = np.atleast_2d(arr).flatten('F')
|
||||
for el in A:
|
||||
self.write(el)
|
||||
|
||||
def write_empty_struct(self):
|
||||
self.write_header((1, 1), mxSTRUCT_CLASS)
|
||||
# max field name length set to 1 in an example matlab struct
|
||||
self.write_element(np.array(1, dtype=np.int32))
|
||||
# Field names element is empty
|
||||
self.write_element(np.array([], dtype=np.int8))
|
||||
|
||||
def write_struct(self, arr):
|
||||
self.write_header(matdims(arr, self.oned_as),
|
||||
mxSTRUCT_CLASS)
|
||||
self._write_items(arr)
|
||||
|
||||
def _write_items(self, arr):
|
||||
# write fieldnames
|
||||
fieldnames = [f[0] for f in arr.dtype.descr]
|
||||
length = max([len(fieldname) for fieldname in fieldnames])+1
|
||||
max_length = (self.long_field_names and 64) or 32
|
||||
if length > max_length:
|
||||
raise ValueError("Field names are restricted to %d characters" %
|
||||
(max_length-1))
|
||||
self.write_element(np.array([length], dtype='i4'))
|
||||
self.write_element(
|
||||
np.array(fieldnames, dtype='S%d' % (length)),
|
||||
mdtype=miINT8)
|
||||
A = np.atleast_2d(arr).flatten('F')
|
||||
for el in A:
|
||||
for f in fieldnames:
|
||||
self.write(el[f])
|
||||
|
||||
def write_object(self, arr):
|
||||
'''Same as writing structs, except different mx class, and extra
|
||||
classname element after header
|
||||
'''
|
||||
self.write_header(matdims(arr, self.oned_as),
|
||||
mxOBJECT_CLASS)
|
||||
self.write_element(np.array(arr.classname, dtype='S'),
|
||||
mdtype=miINT8)
|
||||
self._write_items(arr)
|
||||
|
||||
|
||||
class MatFile5Writer:
|
||||
''' Class for writing mat5 files '''
|
||||
|
||||
@docfiller
|
||||
def __init__(self, file_stream,
|
||||
do_compression=False,
|
||||
unicode_strings=False,
|
||||
global_vars=None,
|
||||
long_field_names=False,
|
||||
oned_as='row'):
|
||||
''' Initialize writer for matlab 5 format files
|
||||
|
||||
Parameters
|
||||
----------
|
||||
%(do_compression)s
|
||||
%(unicode_strings)s
|
||||
global_vars : None or sequence of strings, optional
|
||||
Names of variables to be marked as global for matlab
|
||||
%(long_fields)s
|
||||
%(oned_as)s
|
||||
'''
|
||||
self.file_stream = file_stream
|
||||
self.do_compression = do_compression
|
||||
self.unicode_strings = unicode_strings
|
||||
if global_vars:
|
||||
self.global_vars = global_vars
|
||||
else:
|
||||
self.global_vars = []
|
||||
self.long_field_names = long_field_names
|
||||
self.oned_as = oned_as
|
||||
self._matrix_writer = None
|
||||
|
||||
def write_file_header(self):
|
||||
# write header
|
||||
hdr = np.zeros((), NDT_FILE_HDR)
|
||||
hdr['description'] = (f'MATLAB 5.0 MAT-file Platform: {os.name}, '
|
||||
f'Created on: {time.asctime()}')
|
||||
hdr['version'] = 0x0100
|
||||
hdr['endian_test'] = np.ndarray(shape=(),
|
||||
dtype='S2',
|
||||
buffer=np.uint16(0x4d49))
|
||||
self.file_stream.write(hdr.tobytes())
|
||||
|
||||
def put_variables(self, mdict, write_header=None):
|
||||
''' Write variables in `mdict` to stream
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mdict : mapping
|
||||
mapping with method ``items`` returns name, contents pairs where
|
||||
``name`` which will appear in the matlab workspace in file load, and
|
||||
``contents`` is something writeable to a matlab file, such as a NumPy
|
||||
array.
|
||||
write_header : {None, True, False}, optional
|
||||
If True, then write the matlab file header before writing the
|
||||
variables. If None (the default) then write the file header
|
||||
if we are at position 0 in the stream. By setting False
|
||||
here, and setting the stream position to the end of the file,
|
||||
you can append variables to a matlab file
|
||||
'''
|
||||
# write header if requested, or None and start of file
|
||||
if write_header is None:
|
||||
write_header = self.file_stream.tell() == 0
|
||||
if write_header:
|
||||
self.write_file_header()
|
||||
self._matrix_writer = VarWriter5(self)
|
||||
for name, var in mdict.items():
|
||||
if name[0] == '_':
|
||||
continue
|
||||
is_global = name in self.global_vars
|
||||
if self.do_compression:
|
||||
stream = BytesIO()
|
||||
self._matrix_writer.file_stream = stream
|
||||
self._matrix_writer.write_top(var, name.encode('latin1'), is_global)
|
||||
out_str = zlib.compress(stream.getvalue())
|
||||
tag = np.empty((), NDT_TAG_FULL)
|
||||
tag['mdtype'] = miCOMPRESSED
|
||||
tag['byte_count'] = len(out_str)
|
||||
self.file_stream.write(tag.tobytes())
|
||||
self.file_stream.write(out_str)
|
||||
else: # not compressing
|
||||
self._matrix_writer.write_top(var, name.encode('latin1'), is_global)
|
@ -0,0 +1,281 @@
|
||||
''' Constants and classes for matlab 5 read and write
|
||||
|
||||
See also mio5_utils.pyx where these same constants arise as c enums.
|
||||
|
||||
If you make changes in this file, don't forget to change mio5_utils.pyx
|
||||
'''
|
||||
import numpy as np
|
||||
|
||||
from ._miobase import convert_dtypes
|
||||
|
||||
|
||||
__all__ = [
|
||||
'MDTYPES', 'MatlabFunction', 'MatlabObject', 'MatlabOpaque',
|
||||
'NP_TO_MTYPES', 'NP_TO_MXTYPES', 'OPAQUE_DTYPE', 'codecs_template',
|
||||
'mat_struct', 'mclass_dtypes_template', 'mclass_info', 'mdtypes_template',
|
||||
'miCOMPRESSED', 'miDOUBLE', 'miINT16', 'miINT32', 'miINT64', 'miINT8',
|
||||
'miMATRIX', 'miSINGLE', 'miUINT16', 'miUINT32', 'miUINT64', 'miUINT8',
|
||||
'miUTF16', 'miUTF32', 'miUTF8', 'mxCELL_CLASS', 'mxCHAR_CLASS',
|
||||
'mxDOUBLE_CLASS', 'mxFUNCTION_CLASS', 'mxINT16_CLASS', 'mxINT32_CLASS',
|
||||
'mxINT64_CLASS', 'mxINT8_CLASS', 'mxOBJECT_CLASS',
|
||||
'mxOBJECT_CLASS_FROM_MATRIX_H', 'mxOPAQUE_CLASS', 'mxSINGLE_CLASS',
|
||||
'mxSPARSE_CLASS', 'mxSTRUCT_CLASS', 'mxUINT16_CLASS', 'mxUINT32_CLASS',
|
||||
'mxUINT64_CLASS', 'mxUINT8_CLASS'
|
||||
]
|
||||
miINT8 = 1
|
||||
miUINT8 = 2
|
||||
miINT16 = 3
|
||||
miUINT16 = 4
|
||||
miINT32 = 5
|
||||
miUINT32 = 6
|
||||
miSINGLE = 7
|
||||
miDOUBLE = 9
|
||||
miINT64 = 12
|
||||
miUINT64 = 13
|
||||
miMATRIX = 14
|
||||
miCOMPRESSED = 15
|
||||
miUTF8 = 16
|
||||
miUTF16 = 17
|
||||
miUTF32 = 18
|
||||
|
||||
mxCELL_CLASS = 1
|
||||
mxSTRUCT_CLASS = 2
|
||||
# The March 2008 edition of "Matlab 7 MAT-File Format" says that
|
||||
# mxOBJECT_CLASS = 3, whereas matrix.h says that mxLOGICAL = 3.
|
||||
# Matlab 2008a appears to save logicals as type 9, so we assume that
|
||||
# the document is correct. See type 18, below.
|
||||
mxOBJECT_CLASS = 3
|
||||
mxCHAR_CLASS = 4
|
||||
mxSPARSE_CLASS = 5
|
||||
mxDOUBLE_CLASS = 6
|
||||
mxSINGLE_CLASS = 7
|
||||
mxINT8_CLASS = 8
|
||||
mxUINT8_CLASS = 9
|
||||
mxINT16_CLASS = 10
|
||||
mxUINT16_CLASS = 11
|
||||
mxINT32_CLASS = 12
|
||||
mxUINT32_CLASS = 13
|
||||
# The following are not in the March 2008 edition of "Matlab 7
|
||||
# MAT-File Format," but were guessed from matrix.h.
|
||||
mxINT64_CLASS = 14
|
||||
mxUINT64_CLASS = 15
|
||||
mxFUNCTION_CLASS = 16
|
||||
# Not doing anything with these at the moment.
|
||||
mxOPAQUE_CLASS = 17 # This appears to be a function workspace
|
||||
# Thread 'saving/loading symbol table of annymous functions',
|
||||
# octave-maintainers, April-May 2007
|
||||
# https://lists.gnu.org/archive/html/octave-maintainers/2007-04/msg00031.html
|
||||
# https://lists.gnu.org/archive/html/octave-maintainers/2007-05/msg00032.html
|
||||
# (Was/Deprecated: https://www-old.cae.wisc.edu/pipermail/octave-maintainers/2007-May/002824.html)
|
||||
mxOBJECT_CLASS_FROM_MATRIX_H = 18
|
||||
|
||||
mdtypes_template = {
|
||||
miINT8: 'i1',
|
||||
miUINT8: 'u1',
|
||||
miINT16: 'i2',
|
||||
miUINT16: 'u2',
|
||||
miINT32: 'i4',
|
||||
miUINT32: 'u4',
|
||||
miSINGLE: 'f4',
|
||||
miDOUBLE: 'f8',
|
||||
miINT64: 'i8',
|
||||
miUINT64: 'u8',
|
||||
miUTF8: 'u1',
|
||||
miUTF16: 'u2',
|
||||
miUTF32: 'u4',
|
||||
'file_header': [('description', 'S116'),
|
||||
('subsystem_offset', 'i8'),
|
||||
('version', 'u2'),
|
||||
('endian_test', 'S2')],
|
||||
'tag_full': [('mdtype', 'u4'), ('byte_count', 'u4')],
|
||||
'tag_smalldata':[('byte_count_mdtype', 'u4'), ('data', 'S4')],
|
||||
'array_flags': [('data_type', 'u4'),
|
||||
('byte_count', 'u4'),
|
||||
('flags_class','u4'),
|
||||
('nzmax', 'u4')],
|
||||
'U1': 'U1',
|
||||
}
|
||||
|
||||
mclass_dtypes_template = {
|
||||
mxINT8_CLASS: 'i1',
|
||||
mxUINT8_CLASS: 'u1',
|
||||
mxINT16_CLASS: 'i2',
|
||||
mxUINT16_CLASS: 'u2',
|
||||
mxINT32_CLASS: 'i4',
|
||||
mxUINT32_CLASS: 'u4',
|
||||
mxINT64_CLASS: 'i8',
|
||||
mxUINT64_CLASS: 'u8',
|
||||
mxSINGLE_CLASS: 'f4',
|
||||
mxDOUBLE_CLASS: 'f8',
|
||||
}
|
||||
|
||||
mclass_info = {
|
||||
mxINT8_CLASS: 'int8',
|
||||
mxUINT8_CLASS: 'uint8',
|
||||
mxINT16_CLASS: 'int16',
|
||||
mxUINT16_CLASS: 'uint16',
|
||||
mxINT32_CLASS: 'int32',
|
||||
mxUINT32_CLASS: 'uint32',
|
||||
mxINT64_CLASS: 'int64',
|
||||
mxUINT64_CLASS: 'uint64',
|
||||
mxSINGLE_CLASS: 'single',
|
||||
mxDOUBLE_CLASS: 'double',
|
||||
mxCELL_CLASS: 'cell',
|
||||
mxSTRUCT_CLASS: 'struct',
|
||||
mxOBJECT_CLASS: 'object',
|
||||
mxCHAR_CLASS: 'char',
|
||||
mxSPARSE_CLASS: 'sparse',
|
||||
mxFUNCTION_CLASS: 'function',
|
||||
mxOPAQUE_CLASS: 'opaque',
|
||||
}
|
||||
|
||||
NP_TO_MTYPES = {
|
||||
'f8': miDOUBLE,
|
||||
'c32': miDOUBLE,
|
||||
'c24': miDOUBLE,
|
||||
'c16': miDOUBLE,
|
||||
'f4': miSINGLE,
|
||||
'c8': miSINGLE,
|
||||
'i8': miINT64,
|
||||
'i4': miINT32,
|
||||
'i2': miINT16,
|
||||
'i1': miINT8,
|
||||
'u8': miUINT64,
|
||||
'u4': miUINT32,
|
||||
'u2': miUINT16,
|
||||
'u1': miUINT8,
|
||||
'S1': miUINT8,
|
||||
'U1': miUTF16,
|
||||
'b1': miUINT8, # not standard but seems MATLAB uses this (gh-4022)
|
||||
}
|
||||
|
||||
|
||||
NP_TO_MXTYPES = {
|
||||
'f8': mxDOUBLE_CLASS,
|
||||
'c32': mxDOUBLE_CLASS,
|
||||
'c24': mxDOUBLE_CLASS,
|
||||
'c16': mxDOUBLE_CLASS,
|
||||
'f4': mxSINGLE_CLASS,
|
||||
'c8': mxSINGLE_CLASS,
|
||||
'i8': mxINT64_CLASS,
|
||||
'i4': mxINT32_CLASS,
|
||||
'i2': mxINT16_CLASS,
|
||||
'i1': mxINT8_CLASS,
|
||||
'u8': mxUINT64_CLASS,
|
||||
'u4': mxUINT32_CLASS,
|
||||
'u2': mxUINT16_CLASS,
|
||||
'u1': mxUINT8_CLASS,
|
||||
'S1': mxUINT8_CLASS,
|
||||
'b1': mxUINT8_CLASS, # not standard but seems MATLAB uses this
|
||||
}
|
||||
|
||||
''' Before release v7.1 (release 14) matlab (TM) used the system
|
||||
default character encoding scheme padded out to 16-bits. Release 14
|
||||
and later use Unicode. When saving character data, R14 checks if it
|
||||
can be encoded in 7-bit ascii, and saves in that format if so.'''
|
||||
|
||||
codecs_template = {
|
||||
miUTF8: {'codec': 'utf_8', 'width': 1},
|
||||
miUTF16: {'codec': 'utf_16', 'width': 2},
|
||||
miUTF32: {'codec': 'utf_32','width': 4},
|
||||
}
|
||||
|
||||
|
||||
def _convert_codecs(template, byte_order):
|
||||
''' Convert codec template mapping to byte order
|
||||
|
||||
Set codecs not on this system to None
|
||||
|
||||
Parameters
|
||||
----------
|
||||
template : mapping
|
||||
key, value are respectively codec name, and root name for codec
|
||||
(without byte order suffix)
|
||||
byte_order : {'<', '>'}
|
||||
code for little or big endian
|
||||
|
||||
Returns
|
||||
-------
|
||||
codecs : dict
|
||||
key, value are name, codec (as in .encode(codec))
|
||||
'''
|
||||
codecs = {}
|
||||
postfix = byte_order == '<' and '_le' or '_be'
|
||||
for k, v in template.items():
|
||||
codec = v['codec']
|
||||
try:
|
||||
" ".encode(codec)
|
||||
except LookupError:
|
||||
codecs[k] = None
|
||||
continue
|
||||
if v['width'] > 1:
|
||||
codec += postfix
|
||||
codecs[k] = codec
|
||||
return codecs.copy()
|
||||
|
||||
|
||||
MDTYPES = {}
|
||||
for _bytecode in '<>':
|
||||
_def = {'dtypes': convert_dtypes(mdtypes_template, _bytecode),
|
||||
'classes': convert_dtypes(mclass_dtypes_template, _bytecode),
|
||||
'codecs': _convert_codecs(codecs_template, _bytecode)}
|
||||
MDTYPES[_bytecode] = _def
|
||||
|
||||
|
||||
class mat_struct:
|
||||
"""Placeholder for holding read data from structs.
|
||||
|
||||
We use instances of this class when the user passes False as a value to the
|
||||
``struct_as_record`` parameter of the :func:`scipy.io.loadmat` function.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class MatlabObject(np.ndarray):
|
||||
"""Subclass of ndarray to signal this is a matlab object.
|
||||
|
||||
This is a simple subclass of :class:`numpy.ndarray` meant to be used
|
||||
by :func:`scipy.io.loadmat` and should not be instantiated directly.
|
||||
"""
|
||||
|
||||
def __new__(cls, input_array, classname=None):
|
||||
# Input array is an already formed ndarray instance
|
||||
# We first cast to be our class type
|
||||
obj = np.asarray(input_array).view(cls)
|
||||
# add the new attribute to the created instance
|
||||
obj.classname = classname
|
||||
# Finally, we must return the newly created object:
|
||||
return obj
|
||||
|
||||
def __array_finalize__(self,obj):
|
||||
# reset the attribute from passed original object
|
||||
self.classname = getattr(obj, 'classname', None)
|
||||
# We do not need to return anything
|
||||
|
||||
|
||||
class MatlabFunction(np.ndarray):
|
||||
"""Subclass for a MATLAB function.
|
||||
|
||||
This is a simple subclass of :class:`numpy.ndarray` meant to be used
|
||||
by :func:`scipy.io.loadmat` and should not be directly instantiated.
|
||||
"""
|
||||
|
||||
def __new__(cls, input_array):
|
||||
obj = np.asarray(input_array).view(cls)
|
||||
return obj
|
||||
|
||||
|
||||
class MatlabOpaque(np.ndarray):
|
||||
"""Subclass for a MATLAB opaque matrix.
|
||||
|
||||
This is a simple subclass of :class:`numpy.ndarray` meant to be used
|
||||
by :func:`scipy.io.loadmat` and should not be directly instantiated.
|
||||
"""
|
||||
|
||||
def __new__(cls, input_array):
|
||||
obj = np.asarray(input_array).view(cls)
|
||||
return obj
|
||||
|
||||
|
||||
OPAQUE_DTYPE = np.dtype(
|
||||
[('s0', 'O'), ('s1', 'O'), ('s2', 'O'), ('arr', 'O')])
|
Binary file not shown.
Binary file not shown.
425
venv/lib/python3.12/site-packages/scipy/io/matlab/_miobase.py
Normal file
425
venv/lib/python3.12/site-packages/scipy/io/matlab/_miobase.py
Normal file
@ -0,0 +1,425 @@
|
||||
# Authors: Travis Oliphant, Matthew Brett
|
||||
|
||||
"""
|
||||
Base classes for MATLAB file stream reading.
|
||||
|
||||
MATLAB is a registered trademark of the Mathworks inc.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from scipy._lib import doccer
|
||||
|
||||
from . import _byteordercodes as boc
|
||||
|
||||
__all__ = [
|
||||
'MatReadError', 'MatReadWarning', 'MatWriteError',
|
||||
]
|
||||
|
||||
class MatReadError(Exception):
|
||||
"""Exception indicating a read issue."""
|
||||
|
||||
|
||||
class MatWriteError(Exception):
|
||||
"""Exception indicating a write issue."""
|
||||
|
||||
|
||||
class MatReadWarning(UserWarning):
|
||||
"""Warning class for read issues."""
|
||||
|
||||
|
||||
doc_dict = \
|
||||
{'file_arg':
|
||||
'''file_name : str
|
||||
Name of the mat file (do not need .mat extension if
|
||||
appendmat==True) Can also pass open file-like object.''',
|
||||
'append_arg':
|
||||
'''appendmat : bool, optional
|
||||
True to append the .mat extension to the end of the given
|
||||
filename, if not already present. Default is True.''',
|
||||
'load_args':
|
||||
'''byte_order : str or None, optional
|
||||
None by default, implying byte order guessed from mat
|
||||
file. Otherwise can be one of ('native', '=', 'little', '<',
|
||||
'BIG', '>').
|
||||
mat_dtype : bool, optional
|
||||
If True, return arrays in same dtype as would be loaded into
|
||||
MATLAB (instead of the dtype with which they are saved).
|
||||
squeeze_me : bool, optional
|
||||
Whether to squeeze unit matrix dimensions or not.
|
||||
chars_as_strings : bool, optional
|
||||
Whether to convert char arrays to string arrays.
|
||||
matlab_compatible : bool, optional
|
||||
Returns matrices as would be loaded by MATLAB (implies
|
||||
squeeze_me=False, chars_as_strings=False, mat_dtype=True,
|
||||
struct_as_record=True).''',
|
||||
'struct_arg':
|
||||
'''struct_as_record : bool, optional
|
||||
Whether to load MATLAB structs as NumPy record arrays, or as
|
||||
old-style NumPy arrays with dtype=object. Setting this flag to
|
||||
False replicates the behavior of SciPy version 0.7.x (returning
|
||||
numpy object arrays). The default setting is True, because it
|
||||
allows easier round-trip load and save of MATLAB files.''',
|
||||
'matstream_arg':
|
||||
'''mat_stream : file-like
|
||||
Object with file API, open for reading.''',
|
||||
'long_fields':
|
||||
'''long_field_names : bool, optional
|
||||
* False - maximum field name length in a structure is 31 characters
|
||||
which is the documented maximum length. This is the default.
|
||||
* True - maximum field name length in a structure is 63 characters
|
||||
which works for MATLAB 7.6''',
|
||||
'do_compression':
|
||||
'''do_compression : bool, optional
|
||||
Whether to compress matrices on write. Default is False.''',
|
||||
'oned_as':
|
||||
'''oned_as : {'row', 'column'}, optional
|
||||
If 'column', write 1-D NumPy arrays as column vectors.
|
||||
If 'row', write 1D NumPy arrays as row vectors.''',
|
||||
'unicode_strings':
|
||||
'''unicode_strings : bool, optional
|
||||
If True, write strings as Unicode, else MATLAB usual encoding.'''}
|
||||
|
||||
docfiller = doccer.filldoc(doc_dict)
|
||||
|
||||
'''
|
||||
|
||||
Note on architecture
|
||||
======================
|
||||
|
||||
There are three sets of parameters relevant for reading files. The
|
||||
first are *file read parameters* - containing options that are common
|
||||
for reading the whole file, and therefore every variable within that
|
||||
file. At the moment these are:
|
||||
|
||||
* mat_stream
|
||||
* dtypes (derived from byte code)
|
||||
* byte_order
|
||||
* chars_as_strings
|
||||
* squeeze_me
|
||||
* struct_as_record (MATLAB 5 files)
|
||||
* class_dtypes (derived from order code, MATLAB 5 files)
|
||||
* codecs (MATLAB 5 files)
|
||||
* uint16_codec (MATLAB 5 files)
|
||||
|
||||
Another set of parameters are those that apply only to the current
|
||||
variable being read - the *header*:
|
||||
|
||||
* header related variables (different for v4 and v5 mat files)
|
||||
* is_complex
|
||||
* mclass
|
||||
* var_stream
|
||||
|
||||
With the header, we need ``next_position`` to tell us where the next
|
||||
variable in the stream is.
|
||||
|
||||
Then, for each element in a matrix, there can be *element read
|
||||
parameters*. An element is, for example, one element in a MATLAB cell
|
||||
array. At the moment, these are:
|
||||
|
||||
* mat_dtype
|
||||
|
||||
The file-reading object contains the *file read parameters*. The
|
||||
*header* is passed around as a data object, or may be read and discarded
|
||||
in a single function. The *element read parameters* - the mat_dtype in
|
||||
this instance, is passed into a general post-processing function - see
|
||||
``mio_utils`` for details.
|
||||
'''
|
||||
|
||||
|
||||
def convert_dtypes(dtype_template, order_code):
|
||||
''' Convert dtypes in mapping to given order
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dtype_template : mapping
|
||||
mapping with values returning numpy dtype from ``np.dtype(val)``
|
||||
order_code : str
|
||||
an order code suitable for using in ``dtype.newbyteorder()``
|
||||
|
||||
Returns
|
||||
-------
|
||||
dtypes : mapping
|
||||
mapping where values have been replaced by
|
||||
``np.dtype(val).newbyteorder(order_code)``
|
||||
|
||||
'''
|
||||
dtypes = dtype_template.copy()
|
||||
for k in dtypes:
|
||||
dtypes[k] = np.dtype(dtypes[k]).newbyteorder(order_code)
|
||||
return dtypes
|
||||
|
||||
|
||||
def read_dtype(mat_stream, a_dtype):
|
||||
"""
|
||||
Generic get of byte stream data of known type
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mat_stream : file_like object
|
||||
MATLAB (tm) mat file stream
|
||||
a_dtype : dtype
|
||||
dtype of array to read. `a_dtype` is assumed to be correct
|
||||
endianness.
|
||||
|
||||
Returns
|
||||
-------
|
||||
arr : ndarray
|
||||
Array of dtype `a_dtype` read from stream.
|
||||
|
||||
"""
|
||||
num_bytes = a_dtype.itemsize
|
||||
arr = np.ndarray(shape=(),
|
||||
dtype=a_dtype,
|
||||
buffer=mat_stream.read(num_bytes),
|
||||
order='F')
|
||||
return arr
|
||||
|
||||
|
||||
def matfile_version(file_name, *, appendmat=True):
|
||||
"""
|
||||
Return major, minor tuple depending on apparent mat file type
|
||||
|
||||
Where:
|
||||
|
||||
#. 0,x -> version 4 format mat files
|
||||
#. 1,x -> version 5 format mat files
|
||||
#. 2,x -> version 7.3 format mat files (HDF format)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file_name : str
|
||||
Name of the mat file (do not need .mat extension if
|
||||
appendmat==True). Can also pass open file-like object.
|
||||
appendmat : bool, optional
|
||||
True to append the .mat extension to the end of the given
|
||||
filename, if not already present. Default is True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
major_version : {0, 1, 2}
|
||||
major MATLAB File format version
|
||||
minor_version : int
|
||||
minor MATLAB file format version
|
||||
|
||||
Raises
|
||||
------
|
||||
MatReadError
|
||||
If the file is empty.
|
||||
ValueError
|
||||
The matfile version is unknown.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Has the side effect of setting the file read pointer to 0
|
||||
"""
|
||||
from ._mio import _open_file_context
|
||||
with _open_file_context(file_name, appendmat=appendmat) as fileobj:
|
||||
return _get_matfile_version(fileobj)
|
||||
|
||||
|
||||
get_matfile_version = matfile_version
|
||||
|
||||
|
||||
def _get_matfile_version(fileobj):
|
||||
# Mat4 files have a zero somewhere in first 4 bytes
|
||||
fileobj.seek(0)
|
||||
mopt_bytes = fileobj.read(4)
|
||||
if len(mopt_bytes) == 0:
|
||||
raise MatReadError("Mat file appears to be empty")
|
||||
mopt_ints = np.ndarray(shape=(4,), dtype=np.uint8, buffer=mopt_bytes)
|
||||
if 0 in mopt_ints:
|
||||
fileobj.seek(0)
|
||||
return (0,0)
|
||||
# For 5 format or 7.3 format we need to read an integer in the
|
||||
# header. Bytes 124 through 128 contain a version integer and an
|
||||
# endian test string
|
||||
fileobj.seek(124)
|
||||
tst_str = fileobj.read(4)
|
||||
fileobj.seek(0)
|
||||
maj_ind = int(tst_str[2] == b'I'[0])
|
||||
maj_val = int(tst_str[maj_ind])
|
||||
min_val = int(tst_str[1 - maj_ind])
|
||||
ret = (maj_val, min_val)
|
||||
if maj_val in (1, 2):
|
||||
return ret
|
||||
raise ValueError('Unknown mat file type, version {}, {}'.format(*ret))
|
||||
|
||||
|
||||
def matdims(arr, oned_as='column'):
|
||||
"""
|
||||
Determine equivalent MATLAB dimensions for given array
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : ndarray
|
||||
Input array
|
||||
oned_as : {'column', 'row'}, optional
|
||||
Whether 1-D arrays are returned as MATLAB row or column matrices.
|
||||
Default is 'column'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dims : tuple
|
||||
Shape tuple, in the form MATLAB expects it.
|
||||
|
||||
Notes
|
||||
-----
|
||||
We had to decide what shape a 1 dimensional array would be by
|
||||
default. ``np.atleast_2d`` thinks it is a row vector. The
|
||||
default for a vector in MATLAB (e.g., ``>> 1:12``) is a row vector.
|
||||
|
||||
Versions of scipy up to and including 0.11 resulted (accidentally)
|
||||
in 1-D arrays being read as column vectors. For the moment, we
|
||||
maintain the same tradition here.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.io.matlab._miobase import matdims
|
||||
>>> matdims(np.array(1)) # NumPy scalar
|
||||
(1, 1)
|
||||
>>> matdims(np.array([1])) # 1-D array, 1 element
|
||||
(1, 1)
|
||||
>>> matdims(np.array([1,2])) # 1-D array, 2 elements
|
||||
(2, 1)
|
||||
>>> matdims(np.array([[2],[3]])) # 2-D array, column vector
|
||||
(2, 1)
|
||||
>>> matdims(np.array([[2,3]])) # 2-D array, row vector
|
||||
(1, 2)
|
||||
>>> matdims(np.array([[[2,3]]])) # 3-D array, rowish vector
|
||||
(1, 1, 2)
|
||||
>>> matdims(np.array([])) # empty 1-D array
|
||||
(0, 0)
|
||||
>>> matdims(np.array([[]])) # empty 2-D array
|
||||
(0, 0)
|
||||
>>> matdims(np.array([[[]]])) # empty 3-D array
|
||||
(0, 0, 0)
|
||||
|
||||
Optional argument flips 1-D shape behavior.
|
||||
|
||||
>>> matdims(np.array([1,2]), 'row') # 1-D array, 2 elements
|
||||
(1, 2)
|
||||
|
||||
The argument has to make sense though
|
||||
|
||||
>>> matdims(np.array([1,2]), 'bizarre')
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: 1-D option "bizarre" is strange
|
||||
|
||||
"""
|
||||
shape = arr.shape
|
||||
if shape == (): # scalar
|
||||
return (1, 1)
|
||||
if len(shape) == 1: # 1D
|
||||
if shape[0] == 0:
|
||||
return (0, 0)
|
||||
elif oned_as == 'column':
|
||||
return shape + (1,)
|
||||
elif oned_as == 'row':
|
||||
return (1,) + shape
|
||||
else:
|
||||
raise ValueError('1-D option "%s" is strange'
|
||||
% oned_as)
|
||||
return shape
|
||||
|
||||
|
||||
class MatVarReader:
|
||||
''' Abstract class defining required interface for var readers'''
|
||||
def __init__(self, file_reader):
|
||||
pass
|
||||
|
||||
def read_header(self):
|
||||
''' Returns header '''
|
||||
pass
|
||||
|
||||
def array_from_header(self, header):
|
||||
''' Reads array given header '''
|
||||
pass
|
||||
|
||||
|
||||
class MatFileReader:
|
||||
""" Base object for reading mat files
|
||||
|
||||
To make this class functional, you will need to override the
|
||||
following methods:
|
||||
|
||||
matrix_getter_factory - gives object to fetch next matrix from stream
|
||||
guess_byte_order - guesses file byte order from file
|
||||
"""
|
||||
|
||||
@docfiller
|
||||
def __init__(self, mat_stream,
|
||||
byte_order=None,
|
||||
mat_dtype=False,
|
||||
squeeze_me=False,
|
||||
chars_as_strings=True,
|
||||
matlab_compatible=False,
|
||||
struct_as_record=True,
|
||||
verify_compressed_data_integrity=True,
|
||||
simplify_cells=False):
|
||||
'''
|
||||
Initializer for mat file reader
|
||||
|
||||
mat_stream : file-like
|
||||
object with file API, open for reading
|
||||
%(load_args)s
|
||||
'''
|
||||
# Initialize stream
|
||||
self.mat_stream = mat_stream
|
||||
self.dtypes = {}
|
||||
if not byte_order:
|
||||
byte_order = self.guess_byte_order()
|
||||
else:
|
||||
byte_order = boc.to_numpy_code(byte_order)
|
||||
self.byte_order = byte_order
|
||||
self.struct_as_record = struct_as_record
|
||||
if matlab_compatible:
|
||||
self.set_matlab_compatible()
|
||||
else:
|
||||
self.squeeze_me = squeeze_me
|
||||
self.chars_as_strings = chars_as_strings
|
||||
self.mat_dtype = mat_dtype
|
||||
self.verify_compressed_data_integrity = verify_compressed_data_integrity
|
||||
self.simplify_cells = simplify_cells
|
||||
if simplify_cells:
|
||||
self.squeeze_me = True
|
||||
self.struct_as_record = False
|
||||
|
||||
def set_matlab_compatible(self):
|
||||
''' Sets options to return arrays as MATLAB loads them '''
|
||||
self.mat_dtype = True
|
||||
self.squeeze_me = False
|
||||
self.chars_as_strings = False
|
||||
|
||||
def guess_byte_order(self):
|
||||
''' As we do not know what file type we have, assume native '''
|
||||
return boc.native_code
|
||||
|
||||
def end_of_stream(self):
|
||||
b = self.mat_stream.read(1)
|
||||
curpos = self.mat_stream.tell()
|
||||
self.mat_stream.seek(curpos-1)
|
||||
return len(b) == 0
|
||||
|
||||
|
||||
def arr_dtype_number(arr, num):
|
||||
''' Return dtype for given number of items per element'''
|
||||
return np.dtype(arr.dtype.str[:2] + str(num))
|
||||
|
||||
|
||||
def arr_to_chars(arr):
|
||||
''' Convert string array to char array '''
|
||||
dims = list(arr.shape)
|
||||
if not dims:
|
||||
dims = [1]
|
||||
dims.append(int(arr.dtype.str[2:]))
|
||||
arr = np.ndarray(shape=dims,
|
||||
dtype=arr_dtype_number(arr, 1),
|
||||
buffer=arr)
|
||||
empties = [arr == np.array('', dtype=arr.dtype)]
|
||||
if not np.any(empties):
|
||||
return arr
|
||||
arr = arr.copy()
|
||||
arr[tuple(empties)] = ' '
|
||||
return arr
|
Binary file not shown.
@ -0,0 +1,17 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__: list[str] = []
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="byteordercodes",
|
||||
private_modules=["_byteordercodes"], all=__all__,
|
||||
attribute=name)
|
16
venv/lib/python3.12/site-packages/scipy/io/matlab/mio.py
Normal file
16
venv/lib/python3.12/site-packages/scipy/io/matlab/mio.py
Normal file
@ -0,0 +1,16 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__ = ["loadmat", "savemat", "whosmat"] # noqa: F822
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="mio",
|
||||
private_modules=["_mio"], all=__all__,
|
||||
attribute=name)
|
17
venv/lib/python3.12/site-packages/scipy/io/matlab/mio4.py
Normal file
17
venv/lib/python3.12/site-packages/scipy/io/matlab/mio4.py
Normal file
@ -0,0 +1,17 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__: list[str] = []
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="mio4",
|
||||
private_modules=["_mio4"], all=__all__,
|
||||
attribute=name)
|
19
venv/lib/python3.12/site-packages/scipy/io/matlab/mio5.py
Normal file
19
venv/lib/python3.12/site-packages/scipy/io/matlab/mio5.py
Normal file
@ -0,0 +1,19 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__ = [ # noqa: F822
|
||||
'MatWriteError', 'MatReadError', 'MatReadWarning', 'MatlabObject',
|
||||
'MatlabFunction', 'mat_struct', 'varmats_from_mat',
|
||||
]
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="mio5",
|
||||
private_modules=["_mio5"], all=__all__,
|
||||
attribute=name)
|
@ -0,0 +1,18 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__ = [ # noqa: F822
|
||||
'MatlabFunction', 'MatlabObject', 'MatlabOpaque', 'mat_struct',
|
||||
]
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="mio5_params",
|
||||
private_modules=["_mio5_params"], all=__all__,
|
||||
attribute=name)
|
@ -0,0 +1,17 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__: list[str] = []
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="mio5_utils",
|
||||
private_modules=["_mio5_utils"], all=__all__,
|
||||
attribute=name)
|
@ -0,0 +1,17 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__: list[str] = []
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="mio_utils",
|
||||
private_modules=["_mio_utils"], all=__all__,
|
||||
attribute=name)
|
16
venv/lib/python3.12/site-packages/scipy/io/matlab/miobase.py
Normal file
16
venv/lib/python3.12/site-packages/scipy/io/matlab/miobase.py
Normal file
@ -0,0 +1,16 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__ = ["MatReadError", "MatReadWarning", "MatWriteError"] # noqa: F822
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="miobase",
|
||||
private_modules=["_miobase"], all=__all__,
|
||||
attribute=name)
|
16
venv/lib/python3.12/site-packages/scipy/io/matlab/streams.py
Normal file
16
venv/lib/python3.12/site-packages/scipy/io/matlab/streams.py
Normal file
@ -0,0 +1,16 @@
|
||||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.io.matlab` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
__all__: list[str] = []
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package="io.matlab", module="streams",
|
||||
private_modules=["_streams"], all=__all__,
|
||||
attribute=name)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,5 @@
|
||||
Japanese:
|
||||
すべての人間は、生まれながらにして自由であり、
|
||||
かつ、尊厳と権利と について平等である。
|
||||
人間は、理性と良心とを授けられており、
|
||||
互いに同胞の精神をもって行動しなければならない。
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user