This commit is contained in:
2024-11-29 18:15:30 +00:00
parent 40aade2d8e
commit bc9415586e
5298 changed files with 1938676 additions and 80 deletions

View File

@ -0,0 +1,8 @@
import logging
from fontTools.misc.loggingTools import configLogger
log = logging.getLogger(__name__)
version = __version__ = "4.55.0"
__all__ = ["version", "log", "configLogger"]

View File

@ -0,0 +1,35 @@
import sys
def main(args=None):
if args is None:
args = sys.argv[1:]
# TODO Handle library-wide options. Eg.:
# --unicodedata
# --verbose / other logging stuff
# TODO Allow a way to run arbitrary modules? Useful for setting
# library-wide options and calling another library. Eg.:
#
# $ fonttools --unicodedata=... fontmake ...
#
# This allows for a git-like command where thirdparty commands
# can be added. Should we just try importing the fonttools
# module first and try without if it fails?
if len(sys.argv) < 2:
sys.argv.append("help")
if sys.argv[1] == "-h" or sys.argv[1] == "--help":
sys.argv[1] = "help"
mod = "fontTools." + sys.argv[1]
sys.argv[1] = sys.argv[0] + " " + sys.argv[1]
del sys.argv[0]
import runpy
runpy.run_module(mod, run_name="__main__")
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,439 @@
"""Module for reading and writing AFM (Adobe Font Metrics) files.
Note that this has been designed to read in AFM files generated by Fontographer
and has not been tested on many other files. In particular, it does not
implement the whole Adobe AFM specification [#f1]_ but, it should read most
"common" AFM files.
Here is an example of using `afmLib` to read, modify and write an AFM file:
>>> from fontTools.afmLib import AFM
>>> f = AFM("Tests/afmLib/data/TestAFM.afm")
>>>
>>> # Accessing a pair gets you the kern value
>>> f[("V","A")]
-60
>>>
>>> # Accessing a glyph name gets you metrics
>>> f["A"]
(65, 668, (8, -25, 660, 666))
>>> # (charnum, width, bounding box)
>>>
>>> # Accessing an attribute gets you metadata
>>> f.FontName
'TestFont-Regular'
>>> f.FamilyName
'TestFont'
>>> f.Weight
'Regular'
>>> f.XHeight
500
>>> f.Ascender
750
>>>
>>> # Attributes and items can also be set
>>> f[("A","V")] = -150 # Tighten kerning
>>> f.FontName = "TestFont Squished"
>>>
>>> # And the font written out again (remove the # in front)
>>> #f.write("testfont-squished.afm")
.. rubric:: Footnotes
.. [#f1] `Adobe Technote 5004 <https://www.adobe.com/content/dam/acom/en/devnet/font/pdfs/5004.AFM_Spec.pdf>`_,
Adobe Font Metrics File Format Specification.
"""
import re
# every single line starts with a "word"
identifierRE = re.compile(r"^([A-Za-z]+).*")
# regular expression to parse char lines
charRE = re.compile(
r"(-?\d+)" # charnum
r"\s*;\s*WX\s+" # ; WX
r"(-?\d+)" # width
r"\s*;\s*N\s+" # ; N
r"([.A-Za-z0-9_]+)" # charname
r"\s*;\s*B\s+" # ; B
r"(-?\d+)" # left
r"\s+"
r"(-?\d+)" # bottom
r"\s+"
r"(-?\d+)" # right
r"\s+"
r"(-?\d+)" # top
r"\s*;\s*" # ;
)
# regular expression to parse kerning lines
kernRE = re.compile(
r"([.A-Za-z0-9_]+)" # leftchar
r"\s+"
r"([.A-Za-z0-9_]+)" # rightchar
r"\s+"
r"(-?\d+)" # value
r"\s*"
)
# regular expressions to parse composite info lines of the form:
# Aacute 2 ; PCC A 0 0 ; PCC acute 182 211 ;
compositeRE = re.compile(
r"([.A-Za-z0-9_]+)" # char name
r"\s+"
r"(\d+)" # number of parts
r"\s*;\s*"
)
componentRE = re.compile(
r"PCC\s+" # PPC
r"([.A-Za-z0-9_]+)" # base char name
r"\s+"
r"(-?\d+)" # x offset
r"\s+"
r"(-?\d+)" # y offset
r"\s*;\s*"
)
preferredAttributeOrder = [
"FontName",
"FullName",
"FamilyName",
"Weight",
"ItalicAngle",
"IsFixedPitch",
"FontBBox",
"UnderlinePosition",
"UnderlineThickness",
"Version",
"Notice",
"EncodingScheme",
"CapHeight",
"XHeight",
"Ascender",
"Descender",
]
class error(Exception):
pass
class AFM(object):
_attrs = None
_keywords = [
"StartFontMetrics",
"EndFontMetrics",
"StartCharMetrics",
"EndCharMetrics",
"StartKernData",
"StartKernPairs",
"EndKernPairs",
"EndKernData",
"StartComposites",
"EndComposites",
]
def __init__(self, path=None):
"""AFM file reader.
Instantiating an object with a path name will cause the file to be opened,
read, and parsed. Alternatively the path can be left unspecified, and a
file can be parsed later with the :meth:`read` method."""
self._attrs = {}
self._chars = {}
self._kerning = {}
self._index = {}
self._comments = []
self._composites = {}
if path is not None:
self.read(path)
def read(self, path):
"""Opens, reads and parses a file."""
lines = readlines(path)
for line in lines:
if not line.strip():
continue
m = identifierRE.match(line)
if m is None:
raise error("syntax error in AFM file: " + repr(line))
pos = m.regs[1][1]
word = line[:pos]
rest = line[pos:].strip()
if word in self._keywords:
continue
if word == "C":
self.parsechar(rest)
elif word == "KPX":
self.parsekernpair(rest)
elif word == "CC":
self.parsecomposite(rest)
else:
self.parseattr(word, rest)
def parsechar(self, rest):
m = charRE.match(rest)
if m is None:
raise error("syntax error in AFM file: " + repr(rest))
things = []
for fr, to in m.regs[1:]:
things.append(rest[fr:to])
charname = things[2]
del things[2]
charnum, width, l, b, r, t = (int(thing) for thing in things)
self._chars[charname] = charnum, width, (l, b, r, t)
def parsekernpair(self, rest):
m = kernRE.match(rest)
if m is None:
raise error("syntax error in AFM file: " + repr(rest))
things = []
for fr, to in m.regs[1:]:
things.append(rest[fr:to])
leftchar, rightchar, value = things
value = int(value)
self._kerning[(leftchar, rightchar)] = value
def parseattr(self, word, rest):
if word == "FontBBox":
l, b, r, t = [int(thing) for thing in rest.split()]
self._attrs[word] = l, b, r, t
elif word == "Comment":
self._comments.append(rest)
else:
try:
value = int(rest)
except (ValueError, OverflowError):
self._attrs[word] = rest
else:
self._attrs[word] = value
def parsecomposite(self, rest):
m = compositeRE.match(rest)
if m is None:
raise error("syntax error in AFM file: " + repr(rest))
charname = m.group(1)
ncomponents = int(m.group(2))
rest = rest[m.regs[0][1] :]
components = []
while True:
m = componentRE.match(rest)
if m is None:
raise error("syntax error in AFM file: " + repr(rest))
basechar = m.group(1)
xoffset = int(m.group(2))
yoffset = int(m.group(3))
components.append((basechar, xoffset, yoffset))
rest = rest[m.regs[0][1] :]
if not rest:
break
assert len(components) == ncomponents
self._composites[charname] = components
def write(self, path, sep="\r"):
"""Writes out an AFM font to the given path."""
import time
lines = [
"StartFontMetrics 2.0",
"Comment Generated by afmLib; at %s"
% (time.strftime("%m/%d/%Y %H:%M:%S", time.localtime(time.time()))),
]
# write comments, assuming (possibly wrongly!) they should
# all appear at the top
for comment in self._comments:
lines.append("Comment " + comment)
# write attributes, first the ones we know about, in
# a preferred order
attrs = self._attrs
for attr in preferredAttributeOrder:
if attr in attrs:
value = attrs[attr]
if attr == "FontBBox":
value = "%s %s %s %s" % value
lines.append(attr + " " + str(value))
# then write the attributes we don't know about,
# in alphabetical order
items = sorted(attrs.items())
for attr, value in items:
if attr in preferredAttributeOrder:
continue
lines.append(attr + " " + str(value))
# write char metrics
lines.append("StartCharMetrics " + repr(len(self._chars)))
items = [
(charnum, (charname, width, box))
for charname, (charnum, width, box) in self._chars.items()
]
def myKey(a):
"""Custom key function to make sure unencoded chars (-1)
end up at the end of the list after sorting."""
if a[0] == -1:
a = (0xFFFF,) + a[1:] # 0xffff is an arbitrary large number
return a
items.sort(key=myKey)
for charnum, (charname, width, (l, b, r, t)) in items:
lines.append(
"C %d ; WX %d ; N %s ; B %d %d %d %d ;"
% (charnum, width, charname, l, b, r, t)
)
lines.append("EndCharMetrics")
# write kerning info
lines.append("StartKernData")
lines.append("StartKernPairs " + repr(len(self._kerning)))
items = sorted(self._kerning.items())
for (leftchar, rightchar), value in items:
lines.append("KPX %s %s %d" % (leftchar, rightchar, value))
lines.append("EndKernPairs")
lines.append("EndKernData")
if self._composites:
composites = sorted(self._composites.items())
lines.append("StartComposites %s" % len(self._composites))
for charname, components in composites:
line = "CC %s %s ;" % (charname, len(components))
for basechar, xoffset, yoffset in components:
line = line + " PCC %s %s %s ;" % (basechar, xoffset, yoffset)
lines.append(line)
lines.append("EndComposites")
lines.append("EndFontMetrics")
writelines(path, lines, sep)
def has_kernpair(self, pair):
"""Returns `True` if the given glyph pair (specified as a tuple) exists
in the kerning dictionary."""
return pair in self._kerning
def kernpairs(self):
"""Returns a list of all kern pairs in the kerning dictionary."""
return list(self._kerning.keys())
def has_char(self, char):
"""Returns `True` if the given glyph exists in the font."""
return char in self._chars
def chars(self):
"""Returns a list of all glyph names in the font."""
return list(self._chars.keys())
def comments(self):
"""Returns all comments from the file."""
return self._comments
def addComment(self, comment):
"""Adds a new comment to the file."""
self._comments.append(comment)
def addComposite(self, glyphName, components):
"""Specifies that the glyph `glyphName` is made up of the given components.
The components list should be of the following form::
[
(glyphname, xOffset, yOffset),
...
]
"""
self._composites[glyphName] = components
def __getattr__(self, attr):
if attr in self._attrs:
return self._attrs[attr]
else:
raise AttributeError(attr)
def __setattr__(self, attr, value):
# all attrs *not* starting with "_" are consider to be AFM keywords
if attr[:1] == "_":
self.__dict__[attr] = value
else:
self._attrs[attr] = value
def __delattr__(self, attr):
# all attrs *not* starting with "_" are consider to be AFM keywords
if attr[:1] == "_":
try:
del self.__dict__[attr]
except KeyError:
raise AttributeError(attr)
else:
try:
del self._attrs[attr]
except KeyError:
raise AttributeError(attr)
def __getitem__(self, key):
if isinstance(key, tuple):
# key is a tuple, return the kernpair
return self._kerning[key]
else:
# return the metrics instead
return self._chars[key]
def __setitem__(self, key, value):
if isinstance(key, tuple):
# key is a tuple, set kernpair
self._kerning[key] = value
else:
# set char metrics
self._chars[key] = value
def __delitem__(self, key):
if isinstance(key, tuple):
# key is a tuple, del kernpair
del self._kerning[key]
else:
# del char metrics
del self._chars[key]
def __repr__(self):
if hasattr(self, "FullName"):
return "<AFM object for %s>" % self.FullName
else:
return "<AFM object at %x>" % id(self)
def readlines(path):
with open(path, "r", encoding="ascii") as f:
data = f.read()
return data.splitlines()
def writelines(path, lines, sep="\r"):
with open(path, "w", encoding="ascii", newline=sep) as f:
f.write("\n".join(lines) + "\n")
if __name__ == "__main__":
import EasyDialogs
path = EasyDialogs.AskFileForOpen()
if path:
afm = AFM(path)
char = "A"
if afm.has_char(char):
print(afm[char]) # print charnum, width and boundingbox
pair = ("A", "V")
if afm.has_kernpair(pair):
print(afm[pair]) # print kerning value for pair
print(afm.Version) # various other afm entries have become attributes
print(afm.Weight)
# afm.comments() returns a list of all Comment lines found in the AFM
print(afm.comments())
# print afm.chars()
# print afm.kernpairs()
print(afm)
afm.write(path + ".muck")

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,203 @@
"""CFF2 to CFF converter."""
from fontTools.ttLib import TTFont, newTable
from fontTools.misc.cliTools import makeOutputFileName
from fontTools.cffLib import (
TopDictIndex,
buildOrder,
buildDefaults,
topDictOperators,
privateDictOperators,
)
from .width import optimizeWidths
from collections import defaultdict
import logging
__all__ = ["convertCFF2ToCFF", "main"]
log = logging.getLogger("fontTools.cffLib")
def _convertCFF2ToCFF(cff, otFont):
"""Converts this object from CFF2 format to CFF format. This conversion
is done 'in-place'. The conversion cannot be reversed.
The CFF2 font cannot be variable. (TODO Accept those and convert to the
default instance?)
This assumes a decompiled CFF table. (i.e. that the object has been
filled via :meth:`decompile` and e.g. not loaded from XML.)"""
cff.major = 1
topDictData = TopDictIndex(None)
for item in cff.topDictIndex:
# Iterate over, such that all are decompiled
item.cff2GetGlyphOrder = None
topDictData.append(item)
cff.topDictIndex = topDictData
topDict = topDictData[0]
if hasattr(topDict, "VarStore"):
raise ValueError("Variable CFF2 font cannot be converted to CFF format.")
opOrder = buildOrder(topDictOperators)
topDict.order = opOrder
for key in topDict.rawDict.keys():
if key not in opOrder:
del topDict.rawDict[key]
if hasattr(topDict, key):
delattr(topDict, key)
fdArray = topDict.FDArray
charStrings = topDict.CharStrings
defaults = buildDefaults(privateDictOperators)
order = buildOrder(privateDictOperators)
for fd in fdArray:
fd.setCFF2(False)
privateDict = fd.Private
privateDict.order = order
for key in order:
if key not in privateDict.rawDict and key in defaults:
privateDict.rawDict[key] = defaults[key]
for key in privateDict.rawDict.keys():
if key not in order:
del privateDict.rawDict[key]
if hasattr(privateDict, key):
delattr(privateDict, key)
for cs in charStrings.values():
cs.decompile()
cs.program.append("endchar")
for subrSets in [cff.GlobalSubrs] + [
getattr(fd.Private, "Subrs", []) for fd in fdArray
]:
for cs in subrSets:
cs.program.append("return")
# Add (optimal) width to CharStrings that need it.
widths = defaultdict(list)
metrics = otFont["hmtx"].metrics
for glyphName in charStrings.keys():
cs, fdIndex = charStrings.getItemAndSelector(glyphName)
if fdIndex == None:
fdIndex = 0
widths[fdIndex].append(metrics[glyphName][0])
for fdIndex, widthList in widths.items():
bestDefault, bestNominal = optimizeWidths(widthList)
private = fdArray[fdIndex].Private
private.defaultWidthX = bestDefault
private.nominalWidthX = bestNominal
for glyphName in charStrings.keys():
cs, fdIndex = charStrings.getItemAndSelector(glyphName)
if fdIndex == None:
fdIndex = 0
private = fdArray[fdIndex].Private
width = metrics[glyphName][0]
if width != private.defaultWidthX:
cs.program.insert(0, width - private.nominalWidthX)
mapping = {
name: ("cid" + str(n) if n else ".notdef")
for n, name in enumerate(topDict.charset)
}
topDict.charset = [
"cid" + str(n) if n else ".notdef" for n in range(len(topDict.charset))
]
charStrings.charStrings = {
mapping[name]: v for name, v in charStrings.charStrings.items()
}
# I'm not sure why the following is *not* necessary. And it breaks
# the output if I add it.
# topDict.ROS = ("Adobe", "Identity", 0)
def convertCFF2ToCFF(font, *, updatePostTable=True):
cff = font["CFF2"].cff
_convertCFF2ToCFF(cff, font)
del font["CFF2"]
table = font["CFF "] = newTable("CFF ")
table.cff = cff
if updatePostTable and "post" in font:
# Only version supported for fonts with CFF table is 0x00030000 not 0x20000
post = font["post"]
if post.formatType == 2.0:
post.formatType = 3.0
def main(args=None):
"""Convert CFF OTF font to CFF2 OTF font"""
if args is None:
import sys
args = sys.argv[1:]
import argparse
parser = argparse.ArgumentParser(
"fonttools cffLib.CFFToCFF2",
description="Upgrade a CFF font to CFF2.",
)
parser.add_argument(
"input", metavar="INPUT.ttf", help="Input OTF file with CFF table."
)
parser.add_argument(
"-o",
"--output",
metavar="OUTPUT.ttf",
default=None,
help="Output instance OTF file (default: INPUT-CFF2.ttf).",
)
parser.add_argument(
"--no-recalc-timestamp",
dest="recalc_timestamp",
action="store_false",
help="Don't set the output font's timestamp to the current time.",
)
loggingGroup = parser.add_mutually_exclusive_group(required=False)
loggingGroup.add_argument(
"-v", "--verbose", action="store_true", help="Run more verbosely."
)
loggingGroup.add_argument(
"-q", "--quiet", action="store_true", help="Turn verbosity off."
)
options = parser.parse_args(args)
from fontTools import configLogger
configLogger(
level=("DEBUG" if options.verbose else "ERROR" if options.quiet else "INFO")
)
import os
infile = options.input
if not os.path.isfile(infile):
parser.error("No such file '{}'".format(infile))
outfile = (
makeOutputFileName(infile, overWrite=True, suffix="-CFF")
if not options.output
else options.output
)
font = TTFont(infile, recalcTimestamp=options.recalc_timestamp, recalcBBoxes=False)
convertCFF2ToCFF(font)
log.info(
"Saving %s",
outfile,
)
font.save(outfile)
if __name__ == "__main__":
import sys
sys.exit(main(sys.argv[1:]))

View File

@ -0,0 +1,305 @@
"""CFF to CFF2 converter."""
from fontTools.ttLib import TTFont, newTable
from fontTools.misc.cliTools import makeOutputFileName
from fontTools.misc.psCharStrings import T2WidthExtractor
from fontTools.cffLib import (
TopDictIndex,
FDArrayIndex,
FontDict,
buildOrder,
topDictOperators,
privateDictOperators,
topDictOperators2,
privateDictOperators2,
)
from io import BytesIO
import logging
__all__ = ["convertCFFToCFF2", "main"]
log = logging.getLogger("fontTools.cffLib")
class _NominalWidthUsedError(Exception):
def __add__(self, other):
raise self
def __radd__(self, other):
raise self
def _convertCFFToCFF2(cff, otFont):
"""Converts this object from CFF format to CFF2 format. This conversion
is done 'in-place'. The conversion cannot be reversed.
This assumes a decompiled CFF table. (i.e. that the object has been
filled via :meth:`decompile` and e.g. not loaded from XML.)"""
# Clean up T2CharStrings
topDict = cff.topDictIndex[0]
fdArray = topDict.FDArray if hasattr(topDict, "FDArray") else None
charStrings = topDict.CharStrings
globalSubrs = cff.GlobalSubrs
localSubrs = (
[getattr(fd.Private, "Subrs", []) for fd in fdArray]
if fdArray
else (
[topDict.Private.Subrs]
if hasattr(topDict, "Private") and hasattr(topDict.Private, "Subrs")
else []
)
)
for glyphName in charStrings.keys():
cs, fdIndex = charStrings.getItemAndSelector(glyphName)
cs.decompile()
# Clean up subroutines first
for subrs in [globalSubrs] + localSubrs:
for subr in subrs:
program = subr.program
i = j = len(program)
try:
i = program.index("return")
except ValueError:
pass
try:
j = program.index("endchar")
except ValueError:
pass
program[min(i, j) :] = []
# Clean up glyph charstrings
removeUnusedSubrs = False
nominalWidthXError = _NominalWidthUsedError()
for glyphName in charStrings.keys():
cs, fdIndex = charStrings.getItemAndSelector(glyphName)
program = cs.program
thisLocalSubrs = (
localSubrs[fdIndex]
if fdIndex is not None
else (
getattr(topDict.Private, "Subrs", [])
if hasattr(topDict, "Private")
else []
)
)
# Intentionally use custom type for nominalWidthX, such that any
# CharString that has an explicit width encoded will throw back to us.
extractor = T2WidthExtractor(
thisLocalSubrs,
globalSubrs,
nominalWidthXError,
0,
)
try:
extractor.execute(cs)
except _NominalWidthUsedError:
# Program has explicit width. We want to drop it, but can't
# just pop the first number since it may be a subroutine call.
# Instead, when seeing that, we embed the subroutine and recurse.
# If this ever happened, we later prune unused subroutines.
while len(program) >= 2 and program[1] in ["callsubr", "callgsubr"]:
removeUnusedSubrs = True
subrNumber = program.pop(0)
assert isinstance(subrNumber, int), subrNumber
op = program.pop(0)
bias = extractor.localBias if op == "callsubr" else extractor.globalBias
subrNumber += bias
subrSet = thisLocalSubrs if op == "callsubr" else globalSubrs
subrProgram = subrSet[subrNumber].program
program[:0] = subrProgram
# Now pop the actual width
assert len(program) >= 1, program
program.pop(0)
if program and program[-1] == "endchar":
program.pop()
if removeUnusedSubrs:
cff.remove_unused_subroutines()
# Upconvert TopDict
cff.major = 2
cff2GetGlyphOrder = cff.otFont.getGlyphOrder
topDictData = TopDictIndex(None, cff2GetGlyphOrder)
for item in cff.topDictIndex:
# Iterate over, such that all are decompiled
topDictData.append(item)
cff.topDictIndex = topDictData
topDict = topDictData[0]
if hasattr(topDict, "Private"):
privateDict = topDict.Private
else:
privateDict = None
opOrder = buildOrder(topDictOperators2)
topDict.order = opOrder
topDict.cff2GetGlyphOrder = cff2GetGlyphOrder
if not hasattr(topDict, "FDArray"):
fdArray = topDict.FDArray = FDArrayIndex()
fdArray.strings = None
fdArray.GlobalSubrs = topDict.GlobalSubrs
topDict.GlobalSubrs.fdArray = fdArray
charStrings = topDict.CharStrings
if charStrings.charStringsAreIndexed:
charStrings.charStringsIndex.fdArray = fdArray
else:
charStrings.fdArray = fdArray
fontDict = FontDict()
fontDict.setCFF2(True)
fdArray.append(fontDict)
fontDict.Private = privateDict
privateOpOrder = buildOrder(privateDictOperators2)
if privateDict is not None:
for entry in privateDictOperators:
key = entry[1]
if key not in privateOpOrder:
if key in privateDict.rawDict:
# print "Removing private dict", key
del privateDict.rawDict[key]
if hasattr(privateDict, key):
delattr(privateDict, key)
# print "Removing privateDict attr", key
else:
# clean up the PrivateDicts in the fdArray
fdArray = topDict.FDArray
privateOpOrder = buildOrder(privateDictOperators2)
for fontDict in fdArray:
fontDict.setCFF2(True)
for key in list(fontDict.rawDict.keys()):
if key not in fontDict.order:
del fontDict.rawDict[key]
if hasattr(fontDict, key):
delattr(fontDict, key)
privateDict = fontDict.Private
for entry in privateDictOperators:
key = entry[1]
if key not in privateOpOrder:
if key in list(privateDict.rawDict.keys()):
# print "Removing private dict", key
del privateDict.rawDict[key]
if hasattr(privateDict, key):
delattr(privateDict, key)
# print "Removing privateDict attr", key
# Now delete up the deprecated topDict operators from CFF 1.0
for entry in topDictOperators:
key = entry[1]
# We seem to need to keep the charset operator for now,
# or we fail to compile with some fonts, like AdditionFont.otf.
# I don't know which kind of CFF font those are. But keeping
# charset seems to work. It will be removed when we save and
# read the font again.
#
# AdditionFont.otf has <Encoding name="StandardEncoding"/>.
if key == "charset":
continue
if key not in opOrder:
if key in topDict.rawDict:
del topDict.rawDict[key]
if hasattr(topDict, key):
delattr(topDict, key)
# TODO(behdad): What does the following comment even mean? Both CFF and CFF2
# use the same T2Charstring class. I *think* what it means is that the CharStrings
# were loaded for CFF1, and we need to reload them for CFF2 to set varstore, etc
# on them. At least that's what I understand. It's probably safe to remove this
# and just set vstore where needed.
#
# See comment above about charset as well.
# At this point, the Subrs and Charstrings are all still T2Charstring class
# easiest to fix this by compiling, then decompiling again
file = BytesIO()
cff.compile(file, otFont, isCFF2=True)
file.seek(0)
cff.decompile(file, otFont, isCFF2=True)
def convertCFFToCFF2(font):
cff = font["CFF "].cff
del font["CFF "]
_convertCFFToCFF2(cff, font)
table = font["CFF2"] = newTable("CFF2")
table.cff = cff
def main(args=None):
"""Convert CFF OTF font to CFF2 OTF font"""
if args is None:
import sys
args = sys.argv[1:]
import argparse
parser = argparse.ArgumentParser(
"fonttools cffLib.CFFToCFF2",
description="Upgrade a CFF font to CFF2.",
)
parser.add_argument(
"input", metavar="INPUT.ttf", help="Input OTF file with CFF table."
)
parser.add_argument(
"-o",
"--output",
metavar="OUTPUT.ttf",
default=None,
help="Output instance OTF file (default: INPUT-CFF2.ttf).",
)
parser.add_argument(
"--no-recalc-timestamp",
dest="recalc_timestamp",
action="store_false",
help="Don't set the output font's timestamp to the current time.",
)
loggingGroup = parser.add_mutually_exclusive_group(required=False)
loggingGroup.add_argument(
"-v", "--verbose", action="store_true", help="Run more verbosely."
)
loggingGroup.add_argument(
"-q", "--quiet", action="store_true", help="Turn verbosity off."
)
options = parser.parse_args(args)
from fontTools import configLogger
configLogger(
level=("DEBUG" if options.verbose else "ERROR" if options.quiet else "INFO")
)
import os
infile = options.input
if not os.path.isfile(infile):
parser.error("No such file '{}'".format(infile))
outfile = (
makeOutputFileName(infile, overWrite=True, suffix="-CFF2")
if not options.output
else options.output
)
font = TTFont(infile, recalcTimestamp=options.recalc_timestamp, recalcBBoxes=False)
convertCFFToCFF2(font)
log.info(
"Saving %s",
outfile,
)
font.save(outfile)
if __name__ == "__main__":
import sys
sys.exit(main(sys.argv[1:]))

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,924 @@
# -*- coding: utf-8 -*-
"""T2CharString operator specializer and generalizer.
PostScript glyph drawing operations can be expressed in multiple different
ways. For example, as well as the ``lineto`` operator, there is also a
``hlineto`` operator which draws a horizontal line, removing the need to
specify a ``dx`` coordinate, and a ``vlineto`` operator which draws a
vertical line, removing the need to specify a ``dy`` coordinate. As well
as decompiling :class:`fontTools.misc.psCharStrings.T2CharString` objects
into lists of operations, this module allows for conversion between general
and specific forms of the operation.
"""
from fontTools.cffLib import maxStackLimit
def stringToProgram(string):
if isinstance(string, str):
string = string.split()
program = []
for token in string:
try:
token = int(token)
except ValueError:
try:
token = float(token)
except ValueError:
pass
program.append(token)
return program
def programToString(program):
return " ".join(str(x) for x in program)
def programToCommands(program, getNumRegions=None):
"""Takes a T2CharString program list and returns list of commands.
Each command is a two-tuple of commandname,arg-list. The commandname might
be empty string if no commandname shall be emitted (used for glyph width,
hintmask/cntrmask argument, as well as stray arguments at the end of the
program (🤷).
'getNumRegions' may be None, or a callable object. It must return the
number of regions. 'getNumRegions' takes a single argument, vsindex. It
returns the numRegions for the vsindex.
The Charstring may or may not start with a width value. If the first
non-blend operator has an odd number of arguments, then the first argument is
a width, and is popped off. This is complicated with blend operators, as
there may be more than one before the first hint or moveto operator, and each
one reduces several arguments to just one list argument. We have to sum the
number of arguments that are not part of the blend arguments, and all the
'numBlends' values. We could instead have said that by definition, if there
is a blend operator, there is no width value, since CFF2 Charstrings don't
have width values. I discussed this with Behdad, and we are allowing for an
initial width value in this case because developers may assemble a CFF2
charstring from CFF Charstrings, which could have width values.
"""
seenWidthOp = False
vsIndex = 0
lenBlendStack = 0
lastBlendIndex = 0
commands = []
stack = []
it = iter(program)
for token in it:
if not isinstance(token, str):
stack.append(token)
continue
if token == "blend":
assert getNumRegions is not None
numSourceFonts = 1 + getNumRegions(vsIndex)
# replace the blend op args on the stack with a single list
# containing all the blend op args.
numBlends = stack[-1]
numBlendArgs = numBlends * numSourceFonts + 1
# replace first blend op by a list of the blend ops.
stack[-numBlendArgs:] = [stack[-numBlendArgs:]]
lenStack = len(stack)
lenBlendStack += numBlends + lenStack - 1
lastBlendIndex = lenStack
# if a blend op exists, this is or will be a CFF2 charstring.
continue
elif token == "vsindex":
vsIndex = stack[-1]
assert type(vsIndex) is int
elif (not seenWidthOp) and token in {
"hstem",
"hstemhm",
"vstem",
"vstemhm",
"cntrmask",
"hintmask",
"hmoveto",
"vmoveto",
"rmoveto",
"endchar",
}:
seenWidthOp = True
parity = token in {"hmoveto", "vmoveto"}
if lenBlendStack:
# lenBlendStack has the number of args represented by the last blend
# arg and all the preceding args. We need to now add the number of
# args following the last blend arg.
numArgs = lenBlendStack + len(stack[lastBlendIndex:])
else:
numArgs = len(stack)
if numArgs and (numArgs % 2) ^ parity:
width = stack.pop(0)
commands.append(("", [width]))
if token in {"hintmask", "cntrmask"}:
if stack:
commands.append(("", stack))
commands.append((token, []))
commands.append(("", [next(it)]))
else:
commands.append((token, stack))
stack = []
if stack:
commands.append(("", stack))
return commands
def _flattenBlendArgs(args):
token_list = []
for arg in args:
if isinstance(arg, list):
token_list.extend(arg)
token_list.append("blend")
else:
token_list.append(arg)
return token_list
def commandsToProgram(commands):
"""Takes a commands list as returned by programToCommands() and converts
it back to a T2CharString program list."""
program = []
for op, args in commands:
if any(isinstance(arg, list) for arg in args):
args = _flattenBlendArgs(args)
program.extend(args)
if op:
program.append(op)
return program
def _everyN(el, n):
"""Group the list el into groups of size n"""
l = len(el)
if l % n != 0:
raise ValueError(el)
for i in range(0, l, n):
yield el[i : i + n]
class _GeneralizerDecombinerCommandsMap(object):
@staticmethod
def rmoveto(args):
if len(args) != 2:
raise ValueError(args)
yield ("rmoveto", args)
@staticmethod
def hmoveto(args):
if len(args) != 1:
raise ValueError(args)
yield ("rmoveto", [args[0], 0])
@staticmethod
def vmoveto(args):
if len(args) != 1:
raise ValueError(args)
yield ("rmoveto", [0, args[0]])
@staticmethod
def rlineto(args):
if not args:
raise ValueError(args)
for args in _everyN(args, 2):
yield ("rlineto", args)
@staticmethod
def hlineto(args):
if not args:
raise ValueError(args)
it = iter(args)
try:
while True:
yield ("rlineto", [next(it), 0])
yield ("rlineto", [0, next(it)])
except StopIteration:
pass
@staticmethod
def vlineto(args):
if not args:
raise ValueError(args)
it = iter(args)
try:
while True:
yield ("rlineto", [0, next(it)])
yield ("rlineto", [next(it), 0])
except StopIteration:
pass
@staticmethod
def rrcurveto(args):
if not args:
raise ValueError(args)
for args in _everyN(args, 6):
yield ("rrcurveto", args)
@staticmethod
def hhcurveto(args):
l = len(args)
if l < 4 or l % 4 > 1:
raise ValueError(args)
if l % 2 == 1:
yield ("rrcurveto", [args[1], args[0], args[2], args[3], args[4], 0])
args = args[5:]
for args in _everyN(args, 4):
yield ("rrcurveto", [args[0], 0, args[1], args[2], args[3], 0])
@staticmethod
def vvcurveto(args):
l = len(args)
if l < 4 or l % 4 > 1:
raise ValueError(args)
if l % 2 == 1:
yield ("rrcurveto", [args[0], args[1], args[2], args[3], 0, args[4]])
args = args[5:]
for args in _everyN(args, 4):
yield ("rrcurveto", [0, args[0], args[1], args[2], 0, args[3]])
@staticmethod
def hvcurveto(args):
l = len(args)
if l < 4 or l % 8 not in {0, 1, 4, 5}:
raise ValueError(args)
last_args = None
if l % 2 == 1:
lastStraight = l % 8 == 5
args, last_args = args[:-5], args[-5:]
it = _everyN(args, 4)
try:
while True:
args = next(it)
yield ("rrcurveto", [args[0], 0, args[1], args[2], 0, args[3]])
args = next(it)
yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], 0])
except StopIteration:
pass
if last_args:
args = last_args
if lastStraight:
yield ("rrcurveto", [args[0], 0, args[1], args[2], args[4], args[3]])
else:
yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], args[4]])
@staticmethod
def vhcurveto(args):
l = len(args)
if l < 4 or l % 8 not in {0, 1, 4, 5}:
raise ValueError(args)
last_args = None
if l % 2 == 1:
lastStraight = l % 8 == 5
args, last_args = args[:-5], args[-5:]
it = _everyN(args, 4)
try:
while True:
args = next(it)
yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], 0])
args = next(it)
yield ("rrcurveto", [args[0], 0, args[1], args[2], 0, args[3]])
except StopIteration:
pass
if last_args:
args = last_args
if lastStraight:
yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], args[4]])
else:
yield ("rrcurveto", [args[0], 0, args[1], args[2], args[4], args[3]])
@staticmethod
def rcurveline(args):
l = len(args)
if l < 8 or l % 6 != 2:
raise ValueError(args)
args, last_args = args[:-2], args[-2:]
for args in _everyN(args, 6):
yield ("rrcurveto", args)
yield ("rlineto", last_args)
@staticmethod
def rlinecurve(args):
l = len(args)
if l < 8 or l % 2 != 0:
raise ValueError(args)
args, last_args = args[:-6], args[-6:]
for args in _everyN(args, 2):
yield ("rlineto", args)
yield ("rrcurveto", last_args)
def _convertBlendOpToArgs(blendList):
# args is list of blend op args. Since we are supporting
# recursive blend op calls, some of these args may also
# be a list of blend op args, and need to be converted before
# we convert the current list.
if any([isinstance(arg, list) for arg in blendList]):
args = [
i
for e in blendList
for i in (_convertBlendOpToArgs(e) if isinstance(e, list) else [e])
]
else:
args = blendList
# We now know that blendList contains a blend op argument list, even if
# some of the args are lists that each contain a blend op argument list.
# Convert from:
# [default font arg sequence x0,...,xn] + [delta tuple for x0] + ... + [delta tuple for xn]
# to:
# [ [x0] + [delta tuple for x0],
# ...,
# [xn] + [delta tuple for xn] ]
numBlends = args[-1]
# Can't use args.pop() when the args are being used in a nested list
# comprehension. See calling context
args = args[:-1]
l = len(args)
numRegions = l // numBlends - 1
if not (numBlends * (numRegions + 1) == l):
raise ValueError(blendList)
defaultArgs = [[arg] for arg in args[:numBlends]]
deltaArgs = args[numBlends:]
numDeltaValues = len(deltaArgs)
deltaList = [
deltaArgs[i : i + numRegions] for i in range(0, numDeltaValues, numRegions)
]
blend_args = [a + b + [1] for a, b in zip(defaultArgs, deltaList)]
return blend_args
def generalizeCommands(commands, ignoreErrors=False):
result = []
mapping = _GeneralizerDecombinerCommandsMap
for op, args in commands:
# First, generalize any blend args in the arg list.
if any([isinstance(arg, list) for arg in args]):
try:
args = [
n
for arg in args
for n in (
_convertBlendOpToArgs(arg) if isinstance(arg, list) else [arg]
)
]
except ValueError:
if ignoreErrors:
# Store op as data, such that consumers of commands do not have to
# deal with incorrect number of arguments.
result.append(("", args))
result.append(("", [op]))
else:
raise
func = getattr(mapping, op, None)
if func is None:
result.append((op, args))
continue
try:
for command in func(args):
result.append(command)
except ValueError:
if ignoreErrors:
# Store op as data, such that consumers of commands do not have to
# deal with incorrect number of arguments.
result.append(("", args))
result.append(("", [op]))
else:
raise
return result
def generalizeProgram(program, getNumRegions=None, **kwargs):
return commandsToProgram(
generalizeCommands(programToCommands(program, getNumRegions), **kwargs)
)
def _categorizeVector(v):
"""
Takes X,Y vector v and returns one of r, h, v, or 0 depending on which
of X and/or Y are zero, plus tuple of nonzero ones. If both are zero,
it returns a single zero still.
>>> _categorizeVector((0,0))
('0', (0,))
>>> _categorizeVector((1,0))
('h', (1,))
>>> _categorizeVector((0,2))
('v', (2,))
>>> _categorizeVector((1,2))
('r', (1, 2))
"""
if not v[0]:
if not v[1]:
return "0", v[:1]
else:
return "v", v[1:]
else:
if not v[1]:
return "h", v[:1]
else:
return "r", v
def _mergeCategories(a, b):
if a == "0":
return b
if b == "0":
return a
if a == b:
return a
return None
def _negateCategory(a):
if a == "h":
return "v"
if a == "v":
return "h"
assert a in "0r"
return a
def _convertToBlendCmds(args):
# return a list of blend commands, and
# the remaining non-blended args, if any.
num_args = len(args)
stack_use = 0
new_args = []
i = 0
while i < num_args:
arg = args[i]
i += 1
if not isinstance(arg, list):
new_args.append(arg)
stack_use += 1
else:
prev_stack_use = stack_use
# The arg is a tuple of blend values.
# These are each (master 0,delta 1..delta n, 1)
# Combine as many successive tuples as we can,
# up to the max stack limit.
num_sources = len(arg) - 1
blendlist = [arg]
stack_use += 1 + num_sources # 1 for the num_blends arg
# if we are here, max stack is the CFF2 max stack.
# I use the CFF2 max stack limit here rather than
# the 'maxstack' chosen by the client, as the default
# maxstack may have been used unintentionally. For all
# the other operators, this just produces a little less
# optimization, but here it puts a hard (and low) limit
# on the number of source fonts that can be used.
#
# Make sure the stack depth does not exceed (maxstack - 1), so
# that subroutinizer can insert subroutine calls at any point.
while (
(i < num_args)
and isinstance(args[i], list)
and stack_use + num_sources < maxStackLimit
):
blendlist.append(args[i])
i += 1
stack_use += num_sources
# blendList now contains as many single blend tuples as can be
# combined without exceeding the CFF2 stack limit.
num_blends = len(blendlist)
# append the 'num_blends' default font values
blend_args = []
for arg in blendlist:
blend_args.append(arg[0])
for arg in blendlist:
assert arg[-1] == 1
blend_args.extend(arg[1:-1])
blend_args.append(num_blends)
new_args.append(blend_args)
stack_use = prev_stack_use + num_blends
return new_args
def _addArgs(a, b):
if isinstance(b, list):
if isinstance(a, list):
if len(a) != len(b) or a[-1] != b[-1]:
raise ValueError()
return [_addArgs(va, vb) for va, vb in zip(a[:-1], b[:-1])] + [a[-1]]
else:
a, b = b, a
if isinstance(a, list):
assert a[-1] == 1
return [_addArgs(a[0], b)] + a[1:]
return a + b
def _argsStackUse(args):
stackLen = 0
maxLen = 0
for arg in args:
if type(arg) is list:
# Blended arg
maxLen = max(maxLen, stackLen + _argsStackUse(arg))
stackLen += arg[-1]
else:
stackLen += 1
return max(stackLen, maxLen)
def specializeCommands(
commands,
ignoreErrors=False,
generalizeFirst=True,
preserveTopology=False,
maxstack=48,
):
# We perform several rounds of optimizations. They are carefully ordered and are:
#
# 0. Generalize commands.
# This ensures that they are in our expected simple form, with each line/curve only
# having arguments for one segment, and using the generic form (rlineto/rrcurveto).
# If caller is sure the input is in this form, they can turn off generalization to
# save time.
#
# 1. Combine successive rmoveto operations.
#
# 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
# We specialize into some, made-up, variants as well, which simplifies following
# passes.
#
# 3. Merge or delete redundant operations, to the extent requested.
# OpenType spec declares point numbers in CFF undefined. As such, we happily
# change topology. If client relies on point numbers (in GPOS anchors, or for
# hinting purposes(what?)) they can turn this off.
#
# 4. Peephole optimization to revert back some of the h/v variants back into their
# original "relative" operator (rline/rrcurveto) if that saves a byte.
#
# 5. Combine adjacent operators when possible, minding not to go over max stack size.
#
# 6. Resolve any remaining made-up operators into real operators.
#
# I have convinced myself that this produces optimal bytecode (except for, possibly
# one byte each time maxstack size prohibits combining.) YMMV, but you'd be wrong. :-)
# A dynamic-programming approach can do the same but would be significantly slower.
#
# 7. For any args which are blend lists, convert them to a blend command.
# 0. Generalize commands.
if generalizeFirst:
commands = generalizeCommands(commands, ignoreErrors=ignoreErrors)
else:
commands = list(commands) # Make copy since we modify in-place later.
# 1. Combine successive rmoveto operations.
for i in range(len(commands) - 1, 0, -1):
if "rmoveto" == commands[i][0] == commands[i - 1][0]:
v1, v2 = commands[i - 1][1], commands[i][1]
commands[i - 1] = ("rmoveto", [v1[0] + v2[0], v1[1] + v2[1]])
del commands[i]
# 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
#
# We, in fact, specialize into more, made-up, variants that special-case when both
# X and Y components are zero. This simplifies the following optimization passes.
# This case is rare, but OCD does not let me skip it.
#
# After this round, we will have four variants that use the following mnemonics:
#
# - 'r' for relative, ie. non-zero X and non-zero Y,
# - 'h' for horizontal, ie. zero X and non-zero Y,
# - 'v' for vertical, ie. non-zero X and zero Y,
# - '0' for zeros, ie. zero X and zero Y.
#
# The '0' pseudo-operators are not part of the spec, but help simplify the following
# optimization rounds. We resolve them at the end. So, after this, we will have four
# moveto and four lineto variants:
#
# - 0moveto, 0lineto
# - hmoveto, hlineto
# - vmoveto, vlineto
# - rmoveto, rlineto
#
# and sixteen curveto variants. For example, a '0hcurveto' operator means a curve
# dx0,dy0,dx1,dy1,dx2,dy2,dx3,dy3 where dx0, dx1, and dy3 are zero but not dx3.
# An 'rvcurveto' means dx3 is zero but not dx0,dy0,dy3.
#
# There are nine different variants of curves without the '0'. Those nine map exactly
# to the existing curve variants in the spec: rrcurveto, and the four variants hhcurveto,
# vvcurveto, hvcurveto, and vhcurveto each cover two cases, one with an odd number of
# arguments and one without. Eg. an hhcurveto with an extra argument (odd number of
# arguments) is in fact an rhcurveto. The operators in the spec are designed such that
# all four of rhcurveto, rvcurveto, hrcurveto, and vrcurveto are encodable for one curve.
#
# Of the curve types with '0', the 00curveto is equivalent to a lineto variant. The rest
# of the curve types with a 0 need to be encoded as a h or v variant. Ie. a '0' can be
# thought of a "don't care" and can be used as either an 'h' or a 'v'. As such, we always
# encode a number 0 as argument when we use a '0' variant. Later on, we can just substitute
# the '0' with either 'h' or 'v' and it works.
#
# When we get to curve splines however, things become more complicated... XXX finish this.
# There's one more complexity with splines. If one side of the spline is not horizontal or
# vertical (or zero), ie. if it's 'r', then it limits which spline types we can encode.
# Only hhcurveto and vvcurveto operators can encode a spline starting with 'r', and
# only hvcurveto and vhcurveto operators can encode a spline ending with 'r'.
# This limits our merge opportunities later.
#
for i in range(len(commands)):
op, args = commands[i]
if op in {"rmoveto", "rlineto"}:
c, args = _categorizeVector(args)
commands[i] = c + op[1:], args
continue
if op == "rrcurveto":
c1, args1 = _categorizeVector(args[:2])
c2, args2 = _categorizeVector(args[-2:])
commands[i] = c1 + c2 + "curveto", args1 + args[2:4] + args2
continue
# 3. Merge or delete redundant operations, to the extent requested.
#
# TODO
# A 0moveto that comes before all other path operations can be removed.
# though I find conflicting evidence for this.
#
# TODO
# "If hstem and vstem hints are both declared at the beginning of a
# CharString, and this sequence is followed directly by the hintmask or
# cntrmask operators, then the vstem hint operator (or, if applicable,
# the vstemhm operator) need not be included."
#
# "The sequence and form of a CFF2 CharString program may be represented as:
# {hs* vs* cm* hm* mt subpath}? {mt subpath}*"
#
# https://www.microsoft.com/typography/otspec/cff2charstr.htm#section3.1
#
# For Type2 CharStrings the sequence is:
# w? {hs* vs* cm* hm* mt subpath}? {mt subpath}* endchar"
# Some other redundancies change topology (point numbers).
if not preserveTopology:
for i in range(len(commands) - 1, -1, -1):
op, args = commands[i]
# A 00curveto is demoted to a (specialized) lineto.
if op == "00curveto":
assert len(args) == 4
c, args = _categorizeVector(args[1:3])
op = c + "lineto"
commands[i] = op, args
# and then...
# A 0lineto can be deleted.
if op == "0lineto":
del commands[i]
continue
# Merge adjacent hlineto's and vlineto's.
# In CFF2 charstrings from variable fonts, each
# arg item may be a list of blendable values, one from
# each source font.
if i and op in {"hlineto", "vlineto"} and (op == commands[i - 1][0]):
_, other_args = commands[i - 1]
assert len(args) == 1 and len(other_args) == 1
try:
new_args = [_addArgs(args[0], other_args[0])]
except ValueError:
continue
commands[i - 1] = (op, new_args)
del commands[i]
continue
# 4. Peephole optimization to revert back some of the h/v variants back into their
# original "relative" operator (rline/rrcurveto) if that saves a byte.
for i in range(1, len(commands) - 1):
op, args = commands[i]
prv, nxt = commands[i - 1][0], commands[i + 1][0]
if op in {"0lineto", "hlineto", "vlineto"} and prv == nxt == "rlineto":
assert len(args) == 1
args = [0, args[0]] if op[0] == "v" else [args[0], 0]
commands[i] = ("rlineto", args)
continue
if op[2:] == "curveto" and len(args) == 5 and prv == nxt == "rrcurveto":
assert (op[0] == "r") ^ (op[1] == "r")
if op[0] == "v":
pos = 0
elif op[0] != "r":
pos = 1
elif op[1] == "v":
pos = 4
else:
pos = 5
# Insert, while maintaining the type of args (can be tuple or list).
args = args[:pos] + type(args)((0,)) + args[pos:]
commands[i] = ("rrcurveto", args)
continue
# 5. Combine adjacent operators when possible, minding not to go over max stack size.
stackUse = _argsStackUse(commands[-1][1]) if commands else 0
for i in range(len(commands) - 1, 0, -1):
op1, args1 = commands[i - 1]
op2, args2 = commands[i]
new_op = None
# Merge logic...
if {op1, op2} <= {"rlineto", "rrcurveto"}:
if op1 == op2:
new_op = op1
else:
l = len(args2)
if op2 == "rrcurveto" and l == 6:
new_op = "rlinecurve"
elif l == 2:
new_op = "rcurveline"
elif (op1, op2) in {("rlineto", "rlinecurve"), ("rrcurveto", "rcurveline")}:
new_op = op2
elif {op1, op2} == {"vlineto", "hlineto"}:
new_op = op1
elif "curveto" == op1[2:] == op2[2:]:
d0, d1 = op1[:2]
d2, d3 = op2[:2]
if d1 == "r" or d2 == "r" or d0 == d3 == "r":
continue
d = _mergeCategories(d1, d2)
if d is None:
continue
if d0 == "r":
d = _mergeCategories(d, d3)
if d is None:
continue
new_op = "r" + d + "curveto"
elif d3 == "r":
d0 = _mergeCategories(d0, _negateCategory(d))
if d0 is None:
continue
new_op = d0 + "r" + "curveto"
else:
d0 = _mergeCategories(d0, d3)
if d0 is None:
continue
new_op = d0 + d + "curveto"
# Make sure the stack depth does not exceed (maxstack - 1), so
# that subroutinizer can insert subroutine calls at any point.
args1StackUse = _argsStackUse(args1)
combinedStackUse = max(args1StackUse, len(args1) + stackUse)
if new_op and combinedStackUse < maxstack:
commands[i - 1] = (new_op, args1 + args2)
del commands[i]
stackUse = combinedStackUse
else:
stackUse = args1StackUse
# 6. Resolve any remaining made-up operators into real operators.
for i in range(len(commands)):
op, args = commands[i]
if op in {"0moveto", "0lineto"}:
commands[i] = "h" + op[1:], args
continue
if op[2:] == "curveto" and op[:2] not in {"rr", "hh", "vv", "vh", "hv"}:
l = len(args)
op0, op1 = op[:2]
if (op0 == "r") ^ (op1 == "r"):
assert l % 2 == 1
if op0 == "0":
op0 = "h"
if op1 == "0":
op1 = "h"
if op0 == "r":
op0 = op1
if op1 == "r":
op1 = _negateCategory(op0)
assert {op0, op1} <= {"h", "v"}, (op0, op1)
if l % 2:
if op0 != op1: # vhcurveto / hvcurveto
if (op0 == "h") ^ (l % 8 == 1):
# Swap last two args order
args = args[:-2] + args[-1:] + args[-2:-1]
else: # hhcurveto / vvcurveto
if op0 == "h": # hhcurveto
# Swap first two args order
args = args[1:2] + args[:1] + args[2:]
commands[i] = op0 + op1 + "curveto", args
continue
# 7. For any series of args which are blend lists, convert the series to a single blend arg.
for i in range(len(commands)):
op, args = commands[i]
if any(isinstance(arg, list) for arg in args):
commands[i] = op, _convertToBlendCmds(args)
return commands
def specializeProgram(program, getNumRegions=None, **kwargs):
return commandsToProgram(
specializeCommands(programToCommands(program, getNumRegions), **kwargs)
)
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
import doctest
sys.exit(doctest.testmod().failed)
import argparse
parser = argparse.ArgumentParser(
"fonttools cffLib.specializer",
description="CFF CharString generalizer/specializer",
)
parser.add_argument("program", metavar="command", nargs="*", help="Commands.")
parser.add_argument(
"--num-regions",
metavar="NumRegions",
nargs="*",
default=None,
help="Number of variable-font regions for blend opertaions.",
)
parser.add_argument(
"--font",
metavar="FONTFILE",
default=None,
help="CFF2 font to specialize.",
)
parser.add_argument(
"-o",
"--output-file",
type=str,
help="Output font file name.",
)
options = parser.parse_args(sys.argv[1:])
if options.program:
getNumRegions = (
None
if options.num_regions is None
else lambda vsIndex: int(
options.num_regions[0 if vsIndex is None else vsIndex]
)
)
program = stringToProgram(options.program)
print("Program:")
print(programToString(program))
commands = programToCommands(program, getNumRegions)
print("Commands:")
print(commands)
program2 = commandsToProgram(commands)
print("Program from commands:")
print(programToString(program2))
assert program == program2
print("Generalized program:")
print(programToString(generalizeProgram(program, getNumRegions)))
print("Specialized program:")
print(programToString(specializeProgram(program, getNumRegions)))
if options.font:
from fontTools.ttLib import TTFont
font = TTFont(options.font)
cff2 = font["CFF2"].cff.topDictIndex[0]
charstrings = cff2.CharStrings
for glyphName in charstrings.keys():
charstring = charstrings[glyphName]
charstring.decompile()
getNumRegions = charstring.private.getNumRegions
charstring.program = specializeProgram(
charstring.program, getNumRegions, maxstack=maxStackLimit
)
if options.output_file is None:
from fontTools.misc.cliTools import makeOutputFileName
outfile = makeOutputFileName(
options.font, overWrite=True, suffix=".specialized"
)
else:
outfile = options.output_file
if outfile:
print("Saving", outfile)
font.save(outfile)

View File

@ -0,0 +1,485 @@
from fontTools.misc.psCharStrings import (
SimpleT2Decompiler,
T2WidthExtractor,
calcSubrBias,
)
def _uniq_sort(l):
return sorted(set(l))
class StopHintCountEvent(Exception):
pass
class _DesubroutinizingT2Decompiler(SimpleT2Decompiler):
stop_hintcount_ops = (
"op_hintmask",
"op_cntrmask",
"op_rmoveto",
"op_hmoveto",
"op_vmoveto",
)
def __init__(self, localSubrs, globalSubrs, private=None):
SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs, private)
def execute(self, charString):
self.need_hintcount = True # until proven otherwise
for op_name in self.stop_hintcount_ops:
setattr(self, op_name, self.stop_hint_count)
if hasattr(charString, "_desubroutinized"):
# If a charstring has already been desubroutinized, we will still
# need to execute it if we need to count hints in order to
# compute the byte length for mask arguments, and haven't finished
# counting hints pairs.
if self.need_hintcount and self.callingStack:
try:
SimpleT2Decompiler.execute(self, charString)
except StopHintCountEvent:
del self.callingStack[-1]
return
charString._patches = []
SimpleT2Decompiler.execute(self, charString)
desubroutinized = charString.program[:]
for idx, expansion in reversed(charString._patches):
assert idx >= 2
assert desubroutinized[idx - 1] in [
"callsubr",
"callgsubr",
], desubroutinized[idx - 1]
assert type(desubroutinized[idx - 2]) == int
if expansion[-1] == "return":
expansion = expansion[:-1]
desubroutinized[idx - 2 : idx] = expansion
if not self.private.in_cff2:
if "endchar" in desubroutinized:
# Cut off after first endchar
desubroutinized = desubroutinized[
: desubroutinized.index("endchar") + 1
]
charString._desubroutinized = desubroutinized
del charString._patches
def op_callsubr(self, index):
subr = self.localSubrs[self.operandStack[-1] + self.localBias]
SimpleT2Decompiler.op_callsubr(self, index)
self.processSubr(index, subr)
def op_callgsubr(self, index):
subr = self.globalSubrs[self.operandStack[-1] + self.globalBias]
SimpleT2Decompiler.op_callgsubr(self, index)
self.processSubr(index, subr)
def stop_hint_count(self, *args):
self.need_hintcount = False
for op_name in self.stop_hintcount_ops:
setattr(self, op_name, None)
cs = self.callingStack[-1]
if hasattr(cs, "_desubroutinized"):
raise StopHintCountEvent()
def op_hintmask(self, index):
SimpleT2Decompiler.op_hintmask(self, index)
if self.need_hintcount:
self.stop_hint_count()
def processSubr(self, index, subr):
cs = self.callingStack[-1]
if not hasattr(cs, "_desubroutinized"):
cs._patches.append((index, subr._desubroutinized))
def desubroutinize(cff):
for fontName in cff.fontNames:
font = cff[fontName]
cs = font.CharStrings
for c in cs.values():
c.decompile()
subrs = getattr(c.private, "Subrs", [])
decompiler = _DesubroutinizingT2Decompiler(subrs, c.globalSubrs, c.private)
decompiler.execute(c)
c.program = c._desubroutinized
del c._desubroutinized
# Delete all the local subrs
if hasattr(font, "FDArray"):
for fd in font.FDArray:
pd = fd.Private
if hasattr(pd, "Subrs"):
del pd.Subrs
if "Subrs" in pd.rawDict:
del pd.rawDict["Subrs"]
else:
pd = font.Private
if hasattr(pd, "Subrs"):
del pd.Subrs
if "Subrs" in pd.rawDict:
del pd.rawDict["Subrs"]
# as well as the global subrs
cff.GlobalSubrs.clear()
class _MarkingT2Decompiler(SimpleT2Decompiler):
def __init__(self, localSubrs, globalSubrs, private):
SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs, private)
for subrs in [localSubrs, globalSubrs]:
if subrs and not hasattr(subrs, "_used"):
subrs._used = set()
def op_callsubr(self, index):
self.localSubrs._used.add(self.operandStack[-1] + self.localBias)
SimpleT2Decompiler.op_callsubr(self, index)
def op_callgsubr(self, index):
self.globalSubrs._used.add(self.operandStack[-1] + self.globalBias)
SimpleT2Decompiler.op_callgsubr(self, index)
class _DehintingT2Decompiler(T2WidthExtractor):
class Hints(object):
def __init__(self):
# Whether calling this charstring produces any hint stems
# Note that if a charstring starts with hintmask, it will
# have has_hint set to True, because it *might* produce an
# implicit vstem if called under certain conditions.
self.has_hint = False
# Index to start at to drop all hints
self.last_hint = 0
# Index up to which we know more hints are possible.
# Only relevant if status is 0 or 1.
self.last_checked = 0
# The status means:
# 0: after dropping hints, this charstring is empty
# 1: after dropping hints, there may be more hints
# continuing after this, or there might be
# other things. Not clear yet.
# 2: no more hints possible after this charstring
self.status = 0
# Has hintmask instructions; not recursive
self.has_hintmask = False
# List of indices of calls to empty subroutines to remove.
self.deletions = []
pass
def __init__(
self, css, localSubrs, globalSubrs, nominalWidthX, defaultWidthX, private=None
):
self._css = css
T2WidthExtractor.__init__(
self, localSubrs, globalSubrs, nominalWidthX, defaultWidthX
)
self.private = private
def execute(self, charString):
old_hints = charString._hints if hasattr(charString, "_hints") else None
charString._hints = self.Hints()
T2WidthExtractor.execute(self, charString)
hints = charString._hints
if hints.has_hint or hints.has_hintmask:
self._css.add(charString)
if hints.status != 2:
# Check from last_check, make sure we didn't have any operators.
for i in range(hints.last_checked, len(charString.program) - 1):
if isinstance(charString.program[i], str):
hints.status = 2
break
else:
hints.status = 1 # There's *something* here
hints.last_checked = len(charString.program)
if old_hints:
assert hints.__dict__ == old_hints.__dict__
def op_callsubr(self, index):
subr = self.localSubrs[self.operandStack[-1] + self.localBias]
T2WidthExtractor.op_callsubr(self, index)
self.processSubr(index, subr)
def op_callgsubr(self, index):
subr = self.globalSubrs[self.operandStack[-1] + self.globalBias]
T2WidthExtractor.op_callgsubr(self, index)
self.processSubr(index, subr)
def op_hstem(self, index):
T2WidthExtractor.op_hstem(self, index)
self.processHint(index)
def op_vstem(self, index):
T2WidthExtractor.op_vstem(self, index)
self.processHint(index)
def op_hstemhm(self, index):
T2WidthExtractor.op_hstemhm(self, index)
self.processHint(index)
def op_vstemhm(self, index):
T2WidthExtractor.op_vstemhm(self, index)
self.processHint(index)
def op_hintmask(self, index):
rv = T2WidthExtractor.op_hintmask(self, index)
self.processHintmask(index)
return rv
def op_cntrmask(self, index):
rv = T2WidthExtractor.op_cntrmask(self, index)
self.processHintmask(index)
return rv
def processHintmask(self, index):
cs = self.callingStack[-1]
hints = cs._hints
hints.has_hintmask = True
if hints.status != 2:
# Check from last_check, see if we may be an implicit vstem
for i in range(hints.last_checked, index - 1):
if isinstance(cs.program[i], str):
hints.status = 2
break
else:
# We are an implicit vstem
hints.has_hint = True
hints.last_hint = index + 1
hints.status = 0
hints.last_checked = index + 1
def processHint(self, index):
cs = self.callingStack[-1]
hints = cs._hints
hints.has_hint = True
hints.last_hint = index
hints.last_checked = index
def processSubr(self, index, subr):
cs = self.callingStack[-1]
hints = cs._hints
subr_hints = subr._hints
# Check from last_check, make sure we didn't have
# any operators.
if hints.status != 2:
for i in range(hints.last_checked, index - 1):
if isinstance(cs.program[i], str):
hints.status = 2
break
hints.last_checked = index
if hints.status != 2:
if subr_hints.has_hint:
hints.has_hint = True
# Decide where to chop off from
if subr_hints.status == 0:
hints.last_hint = index
else:
hints.last_hint = index - 2 # Leave the subr call in
elif subr_hints.status == 0:
hints.deletions.append(index)
hints.status = max(hints.status, subr_hints.status)
def _cs_subset_subroutines(charstring, subrs, gsubrs):
p = charstring.program
for i in range(1, len(p)):
if p[i] == "callsubr":
assert isinstance(p[i - 1], int)
p[i - 1] = subrs._used.index(p[i - 1] + subrs._old_bias) - subrs._new_bias
elif p[i] == "callgsubr":
assert isinstance(p[i - 1], int)
p[i - 1] = (
gsubrs._used.index(p[i - 1] + gsubrs._old_bias) - gsubrs._new_bias
)
def _cs_drop_hints(charstring):
hints = charstring._hints
if hints.deletions:
p = charstring.program
for idx in reversed(hints.deletions):
del p[idx - 2 : idx]
if hints.has_hint:
assert not hints.deletions or hints.last_hint <= hints.deletions[0]
charstring.program = charstring.program[hints.last_hint :]
if not charstring.program:
# TODO CFF2 no need for endchar.
charstring.program.append("endchar")
if hasattr(charstring, "width"):
# Insert width back if needed
if charstring.width != charstring.private.defaultWidthX:
# For CFF2 charstrings, this should never happen
assert (
charstring.private.defaultWidthX is not None
), "CFF2 CharStrings must not have an initial width value"
charstring.program.insert(
0, charstring.width - charstring.private.nominalWidthX
)
if hints.has_hintmask:
i = 0
p = charstring.program
while i < len(p):
if p[i] in ["hintmask", "cntrmask"]:
assert i + 1 <= len(p)
del p[i : i + 2]
continue
i += 1
assert len(charstring.program)
del charstring._hints
def remove_hints(cff, *, removeUnusedSubrs: bool = True):
for fontname in cff.keys():
font = cff[fontname]
cs = font.CharStrings
# This can be tricky, but doesn't have to. What we do is:
#
# - Run all used glyph charstrings and recurse into subroutines,
# - For each charstring (including subroutines), if it has any
# of the hint stem operators, we mark it as such.
# Upon returning, for each charstring we note all the
# subroutine calls it makes that (recursively) contain a stem,
# - Dropping hinting then consists of the following two ops:
# * Drop the piece of the program in each charstring before the
# last call to a stem op or a stem-calling subroutine,
# * Drop all hintmask operations.
# - It's trickier... A hintmask right after hints and a few numbers
# will act as an implicit vstemhm. As such, we track whether
# we have seen any non-hint operators so far and do the right
# thing, recursively... Good luck understanding that :(
css = set()
for c in cs.values():
c.decompile()
subrs = getattr(c.private, "Subrs", [])
decompiler = _DehintingT2Decompiler(
css,
subrs,
c.globalSubrs,
c.private.nominalWidthX,
c.private.defaultWidthX,
c.private,
)
decompiler.execute(c)
c.width = decompiler.width
for charstring in css:
_cs_drop_hints(charstring)
del css
# Drop font-wide hinting values
all_privs = []
if hasattr(font, "FDArray"):
all_privs.extend(fd.Private for fd in font.FDArray)
else:
all_privs.append(font.Private)
for priv in all_privs:
for k in [
"BlueValues",
"OtherBlues",
"FamilyBlues",
"FamilyOtherBlues",
"BlueScale",
"BlueShift",
"BlueFuzz",
"StemSnapH",
"StemSnapV",
"StdHW",
"StdVW",
"ForceBold",
"LanguageGroup",
"ExpansionFactor",
]:
if hasattr(priv, k):
setattr(priv, k, None)
if removeUnusedSubrs:
remove_unused_subroutines(cff)
def _pd_delete_empty_subrs(private_dict):
if hasattr(private_dict, "Subrs") and not private_dict.Subrs:
if "Subrs" in private_dict.rawDict:
del private_dict.rawDict["Subrs"]
del private_dict.Subrs
def remove_unused_subroutines(cff):
for fontname in cff.keys():
font = cff[fontname]
cs = font.CharStrings
# Renumber subroutines to remove unused ones
# Mark all used subroutines
for c in cs.values():
subrs = getattr(c.private, "Subrs", [])
decompiler = _MarkingT2Decompiler(subrs, c.globalSubrs, c.private)
decompiler.execute(c)
all_subrs = [font.GlobalSubrs]
if hasattr(font, "FDArray"):
all_subrs.extend(
fd.Private.Subrs
for fd in font.FDArray
if hasattr(fd.Private, "Subrs") and fd.Private.Subrs
)
elif hasattr(font.Private, "Subrs") and font.Private.Subrs:
all_subrs.append(font.Private.Subrs)
subrs = set(subrs) # Remove duplicates
# Prepare
for subrs in all_subrs:
if not hasattr(subrs, "_used"):
subrs._used = set()
subrs._used = _uniq_sort(subrs._used)
subrs._old_bias = calcSubrBias(subrs)
subrs._new_bias = calcSubrBias(subrs._used)
# Renumber glyph charstrings
for c in cs.values():
subrs = getattr(c.private, "Subrs", None)
_cs_subset_subroutines(c, subrs, font.GlobalSubrs)
# Renumber subroutines themselves
for subrs in all_subrs:
if subrs == font.GlobalSubrs:
if not hasattr(font, "FDArray") and hasattr(font.Private, "Subrs"):
local_subrs = font.Private.Subrs
elif hasattr(font, "FDArray") and len(font.FDArray) == 1:
local_subrs = font.FDArray[0].Private.Subrs
else:
local_subrs = None
else:
local_subrs = subrs
subrs.items = [subrs.items[i] for i in subrs._used]
if hasattr(subrs, "file"):
del subrs.file
if hasattr(subrs, "offsets"):
del subrs.offsets
for subr in subrs.items:
_cs_subset_subroutines(subr, local_subrs, font.GlobalSubrs)
# Delete local SubrsIndex if empty
if hasattr(font, "FDArray"):
for fd in font.FDArray:
_pd_delete_empty_subrs(fd.Private)
else:
_pd_delete_empty_subrs(font.Private)
# Cleanup
for subrs in all_subrs:
del subrs._used, subrs._old_bias, subrs._new_bias

View File

@ -0,0 +1,210 @@
# -*- coding: utf-8 -*-
"""T2CharString glyph width optimizer.
CFF glyphs whose width equals the CFF Private dictionary's ``defaultWidthX``
value do not need to specify their width in their charstring, saving bytes.
This module determines the optimum ``defaultWidthX`` and ``nominalWidthX``
values for a font, when provided with a list of glyph widths."""
from fontTools.ttLib import TTFont
from collections import defaultdict
from operator import add
from functools import reduce
__all__ = ["optimizeWidths", "main"]
class missingdict(dict):
def __init__(self, missing_func):
self.missing_func = missing_func
def __missing__(self, v):
return self.missing_func(v)
def cumSum(f, op=add, start=0, decreasing=False):
keys = sorted(f.keys())
minx, maxx = keys[0], keys[-1]
total = reduce(op, f.values(), start)
if decreasing:
missing = lambda x: start if x > maxx else total
domain = range(maxx, minx - 1, -1)
else:
missing = lambda x: start if x < minx else total
domain = range(minx, maxx + 1)
out = missingdict(missing)
v = start
for x in domain:
v = op(v, f[x])
out[x] = v
return out
def byteCost(widths, default, nominal):
if not hasattr(widths, "items"):
d = defaultdict(int)
for w in widths:
d[w] += 1
widths = d
cost = 0
for w, freq in widths.items():
if w == default:
continue
diff = abs(w - nominal)
if diff <= 107:
cost += freq
elif diff <= 1131:
cost += freq * 2
else:
cost += freq * 5
return cost
def optimizeWidthsBruteforce(widths):
"""Bruteforce version. Veeeeeeeeeeeeeeeeery slow. Only works for smallests of fonts."""
d = defaultdict(int)
for w in widths:
d[w] += 1
# Maximum number of bytes using default can possibly save
maxDefaultAdvantage = 5 * max(d.values())
minw, maxw = min(widths), max(widths)
domain = list(range(minw, maxw + 1))
bestCostWithoutDefault = min(byteCost(widths, None, nominal) for nominal in domain)
bestCost = len(widths) * 5 + 1
for nominal in domain:
if byteCost(widths, None, nominal) > bestCost + maxDefaultAdvantage:
continue
for default in domain:
cost = byteCost(widths, default, nominal)
if cost < bestCost:
bestCost = cost
bestDefault = default
bestNominal = nominal
return bestDefault, bestNominal
def optimizeWidths(widths):
"""Given a list of glyph widths, or dictionary mapping glyph width to number of
glyphs having that, returns a tuple of best CFF default and nominal glyph widths.
This algorithm is linear in UPEM+numGlyphs."""
if not hasattr(widths, "items"):
d = defaultdict(int)
for w in widths:
d[w] += 1
widths = d
keys = sorted(widths.keys())
minw, maxw = keys[0], keys[-1]
domain = list(range(minw, maxw + 1))
# Cumulative sum/max forward/backward.
cumFrqU = cumSum(widths, op=add)
cumMaxU = cumSum(widths, op=max)
cumFrqD = cumSum(widths, op=add, decreasing=True)
cumMaxD = cumSum(widths, op=max, decreasing=True)
# Cost per nominal choice, without default consideration.
nomnCostU = missingdict(
lambda x: cumFrqU[x] + cumFrqU[x - 108] + cumFrqU[x - 1132] * 3
)
nomnCostD = missingdict(
lambda x: cumFrqD[x] + cumFrqD[x + 108] + cumFrqD[x + 1132] * 3
)
nomnCost = missingdict(lambda x: nomnCostU[x] + nomnCostD[x] - widths[x])
# Cost-saving per nominal choice, by best default choice.
dfltCostU = missingdict(
lambda x: max(cumMaxU[x], cumMaxU[x - 108] * 2, cumMaxU[x - 1132] * 5)
)
dfltCostD = missingdict(
lambda x: max(cumMaxD[x], cumMaxD[x + 108] * 2, cumMaxD[x + 1132] * 5)
)
dfltCost = missingdict(lambda x: max(dfltCostU[x], dfltCostD[x]))
# Combined cost per nominal choice.
bestCost = missingdict(lambda x: nomnCost[x] - dfltCost[x])
# Best nominal.
nominal = min(domain, key=lambda x: bestCost[x])
# Work back the best default.
bestC = bestCost[nominal]
dfltC = nomnCost[nominal] - bestCost[nominal]
ends = []
if dfltC == dfltCostU[nominal]:
starts = [nominal, nominal - 108, nominal - 1132]
for start in starts:
while cumMaxU[start] and cumMaxU[start] == cumMaxU[start - 1]:
start -= 1
ends.append(start)
else:
starts = [nominal, nominal + 108, nominal + 1132]
for start in starts:
while cumMaxD[start] and cumMaxD[start] == cumMaxD[start + 1]:
start += 1
ends.append(start)
default = min(ends, key=lambda default: byteCost(widths, default, nominal))
return default, nominal
def main(args=None):
"""Calculate optimum defaultWidthX/nominalWidthX values"""
import argparse
parser = argparse.ArgumentParser(
"fonttools cffLib.width",
description=main.__doc__,
)
parser.add_argument(
"inputs", metavar="FILE", type=str, nargs="+", help="Input TTF files"
)
parser.add_argument(
"-b",
"--brute-force",
dest="brute",
action="store_true",
help="Use brute-force approach (VERY slow)",
)
args = parser.parse_args(args)
for fontfile in args.inputs:
font = TTFont(fontfile)
hmtx = font["hmtx"]
widths = [m[0] for m in hmtx.metrics.values()]
if args.brute:
default, nominal = optimizeWidthsBruteforce(widths)
else:
default, nominal = optimizeWidths(widths)
print(
"glyphs=%d default=%d nominal=%d byteCost=%d"
% (len(widths), default, nominal, byteCost(widths, default, nominal))
)
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
import doctest
sys.exit(doctest.testmod().failed)
main()

View File

@ -0,0 +1,664 @@
"""
colorLib.builder: Build COLR/CPAL tables from scratch
"""
import collections
import copy
import enum
from functools import partial
from math import ceil, log
from typing import (
Any,
Dict,
Generator,
Iterable,
List,
Mapping,
Optional,
Sequence,
Tuple,
Type,
TypeVar,
Union,
)
from fontTools.misc.arrayTools import intRect
from fontTools.misc.fixedTools import fixedToFloat
from fontTools.misc.treeTools import build_n_ary_tree
from fontTools.ttLib.tables import C_O_L_R_
from fontTools.ttLib.tables import C_P_A_L_
from fontTools.ttLib.tables import _n_a_m_e
from fontTools.ttLib.tables import otTables as ot
from fontTools.ttLib.tables.otTables import ExtendMode, CompositeMode
from .errors import ColorLibError
from .geometry import round_start_circle_stable_containment
from .table_builder import BuildCallback, TableBuilder
# TODO move type aliases to colorLib.types?
T = TypeVar("T")
_Kwargs = Mapping[str, Any]
_PaintInput = Union[int, _Kwargs, ot.Paint, Tuple[str, "_PaintInput"]]
_PaintInputList = Sequence[_PaintInput]
_ColorGlyphsDict = Dict[str, Union[_PaintInputList, _PaintInput]]
_ColorGlyphsV0Dict = Dict[str, Sequence[Tuple[str, int]]]
_ClipBoxInput = Union[
Tuple[int, int, int, int, int], # format 1, variable
Tuple[int, int, int, int], # format 0, non-variable
ot.ClipBox,
]
MAX_PAINT_COLR_LAYER_COUNT = 255
_DEFAULT_ALPHA = 1.0
_MAX_REUSE_LEN = 32
def _beforeBuildPaintRadialGradient(paint, source):
x0 = source["x0"]
y0 = source["y0"]
r0 = source["r0"]
x1 = source["x1"]
y1 = source["y1"]
r1 = source["r1"]
# TODO apparently no builder_test confirms this works (?)
# avoid abrupt change after rounding when c0 is near c1's perimeter
c = round_start_circle_stable_containment((x0, y0), r0, (x1, y1), r1)
x0, y0 = c.centre
r0 = c.radius
# update source to ensure paint is built with corrected values
source["x0"] = x0
source["y0"] = y0
source["r0"] = r0
source["x1"] = x1
source["y1"] = y1
source["r1"] = r1
return paint, source
def _defaultColorStop():
colorStop = ot.ColorStop()
colorStop.Alpha = _DEFAULT_ALPHA
return colorStop
def _defaultVarColorStop():
colorStop = ot.VarColorStop()
colorStop.Alpha = _DEFAULT_ALPHA
return colorStop
def _defaultColorLine():
colorLine = ot.ColorLine()
colorLine.Extend = ExtendMode.PAD
return colorLine
def _defaultVarColorLine():
colorLine = ot.VarColorLine()
colorLine.Extend = ExtendMode.PAD
return colorLine
def _defaultPaintSolid():
paint = ot.Paint()
paint.Alpha = _DEFAULT_ALPHA
return paint
def _buildPaintCallbacks():
return {
(
BuildCallback.BEFORE_BUILD,
ot.Paint,
ot.PaintFormat.PaintRadialGradient,
): _beforeBuildPaintRadialGradient,
(
BuildCallback.BEFORE_BUILD,
ot.Paint,
ot.PaintFormat.PaintVarRadialGradient,
): _beforeBuildPaintRadialGradient,
(BuildCallback.CREATE_DEFAULT, ot.ColorStop): _defaultColorStop,
(BuildCallback.CREATE_DEFAULT, ot.VarColorStop): _defaultVarColorStop,
(BuildCallback.CREATE_DEFAULT, ot.ColorLine): _defaultColorLine,
(BuildCallback.CREATE_DEFAULT, ot.VarColorLine): _defaultVarColorLine,
(
BuildCallback.CREATE_DEFAULT,
ot.Paint,
ot.PaintFormat.PaintSolid,
): _defaultPaintSolid,
(
BuildCallback.CREATE_DEFAULT,
ot.Paint,
ot.PaintFormat.PaintVarSolid,
): _defaultPaintSolid,
}
def populateCOLRv0(
table: ot.COLR,
colorGlyphsV0: _ColorGlyphsV0Dict,
glyphMap: Optional[Mapping[str, int]] = None,
):
"""Build v0 color layers and add to existing COLR table.
Args:
table: a raw ``otTables.COLR()`` object (not ttLib's ``table_C_O_L_R_``).
colorGlyphsV0: map of base glyph names to lists of (layer glyph names,
color palette index) tuples. Can be empty.
glyphMap: a map from glyph names to glyph indices, as returned from
``TTFont.getReverseGlyphMap()``, to optionally sort base records by GID.
"""
if glyphMap is not None:
colorGlyphItems = sorted(
colorGlyphsV0.items(), key=lambda item: glyphMap[item[0]]
)
else:
colorGlyphItems = colorGlyphsV0.items()
baseGlyphRecords = []
layerRecords = []
for baseGlyph, layers in colorGlyphItems:
baseRec = ot.BaseGlyphRecord()
baseRec.BaseGlyph = baseGlyph
baseRec.FirstLayerIndex = len(layerRecords)
baseRec.NumLayers = len(layers)
baseGlyphRecords.append(baseRec)
for layerGlyph, paletteIndex in layers:
layerRec = ot.LayerRecord()
layerRec.LayerGlyph = layerGlyph
layerRec.PaletteIndex = paletteIndex
layerRecords.append(layerRec)
table.BaseGlyphRecordArray = table.LayerRecordArray = None
if baseGlyphRecords:
table.BaseGlyphRecordArray = ot.BaseGlyphRecordArray()
table.BaseGlyphRecordArray.BaseGlyphRecord = baseGlyphRecords
if layerRecords:
table.LayerRecordArray = ot.LayerRecordArray()
table.LayerRecordArray.LayerRecord = layerRecords
table.BaseGlyphRecordCount = len(baseGlyphRecords)
table.LayerRecordCount = len(layerRecords)
def buildCOLR(
colorGlyphs: _ColorGlyphsDict,
version: Optional[int] = None,
*,
glyphMap: Optional[Mapping[str, int]] = None,
varStore: Optional[ot.VarStore] = None,
varIndexMap: Optional[ot.DeltaSetIndexMap] = None,
clipBoxes: Optional[Dict[str, _ClipBoxInput]] = None,
allowLayerReuse: bool = True,
) -> C_O_L_R_.table_C_O_L_R_:
"""Build COLR table from color layers mapping.
Args:
colorGlyphs: map of base glyph name to, either list of (layer glyph name,
color palette index) tuples for COLRv0; or a single ``Paint`` (dict) or
list of ``Paint`` for COLRv1.
version: the version of COLR table. If None, the version is determined
by the presence of COLRv1 paints or variation data (varStore), which
require version 1; otherwise, if all base glyphs use only simple color
layers, version 0 is used.
glyphMap: a map from glyph names to glyph indices, as returned from
TTFont.getReverseGlyphMap(), to optionally sort base records by GID.
varStore: Optional ItemVarationStore for deltas associated with v1 layer.
varIndexMap: Optional DeltaSetIndexMap for deltas associated with v1 layer.
clipBoxes: Optional map of base glyph name to clip box 4- or 5-tuples:
(xMin, yMin, xMax, yMax) or (xMin, yMin, xMax, yMax, varIndexBase).
Returns:
A new COLR table.
"""
self = C_O_L_R_.table_C_O_L_R_()
if varStore is not None and version == 0:
raise ValueError("Can't add VarStore to COLRv0")
if version in (None, 0) and not varStore:
# split color glyphs into v0 and v1 and encode separately
colorGlyphsV0, colorGlyphsV1 = _split_color_glyphs_by_version(colorGlyphs)
if version == 0 and colorGlyphsV1:
raise ValueError("Can't encode COLRv1 glyphs in COLRv0")
else:
# unless explicitly requested for v1 or have variations, in which case
# we encode all color glyph as v1
colorGlyphsV0, colorGlyphsV1 = {}, colorGlyphs
colr = ot.COLR()
populateCOLRv0(colr, colorGlyphsV0, glyphMap)
colr.LayerList, colr.BaseGlyphList = buildColrV1(
colorGlyphsV1,
glyphMap,
allowLayerReuse=allowLayerReuse,
)
if version is None:
version = 1 if (varStore or colorGlyphsV1) else 0
elif version not in (0, 1):
raise NotImplementedError(version)
self.version = colr.Version = version
if version == 0:
self.ColorLayers = self._decompileColorLayersV0(colr)
else:
colr.ClipList = buildClipList(clipBoxes) if clipBoxes else None
colr.VarIndexMap = varIndexMap
colr.VarStore = varStore
self.table = colr
return self
def buildClipList(clipBoxes: Dict[str, _ClipBoxInput]) -> ot.ClipList:
clipList = ot.ClipList()
clipList.Format = 1
clipList.clips = {name: buildClipBox(box) for name, box in clipBoxes.items()}
return clipList
def buildClipBox(clipBox: _ClipBoxInput) -> ot.ClipBox:
if isinstance(clipBox, ot.ClipBox):
return clipBox
n = len(clipBox)
clip = ot.ClipBox()
if n not in (4, 5):
raise ValueError(f"Invalid ClipBox: expected 4 or 5 values, found {n}")
clip.xMin, clip.yMin, clip.xMax, clip.yMax = intRect(clipBox[:4])
clip.Format = int(n == 5) + 1
if n == 5:
clip.VarIndexBase = int(clipBox[4])
return clip
class ColorPaletteType(enum.IntFlag):
USABLE_WITH_LIGHT_BACKGROUND = 0x0001
USABLE_WITH_DARK_BACKGROUND = 0x0002
@classmethod
def _missing_(cls, value):
# enforce reserved bits
if isinstance(value, int) and (value < 0 or value & 0xFFFC != 0):
raise ValueError(f"{value} is not a valid {cls.__name__}")
return super()._missing_(value)
# None, 'abc' or {'en': 'abc', 'de': 'xyz'}
_OptionalLocalizedString = Union[None, str, Dict[str, str]]
def buildPaletteLabels(
labels: Iterable[_OptionalLocalizedString], nameTable: _n_a_m_e.table__n_a_m_e
) -> List[Optional[int]]:
return [
(
nameTable.addMultilingualName(l, mac=False)
if isinstance(l, dict)
else (
C_P_A_L_.table_C_P_A_L_.NO_NAME_ID
if l is None
else nameTable.addMultilingualName({"en": l}, mac=False)
)
)
for l in labels
]
def buildCPAL(
palettes: Sequence[Sequence[Tuple[float, float, float, float]]],
paletteTypes: Optional[Sequence[ColorPaletteType]] = None,
paletteLabels: Optional[Sequence[_OptionalLocalizedString]] = None,
paletteEntryLabels: Optional[Sequence[_OptionalLocalizedString]] = None,
nameTable: Optional[_n_a_m_e.table__n_a_m_e] = None,
) -> C_P_A_L_.table_C_P_A_L_:
"""Build CPAL table from list of color palettes.
Args:
palettes: list of lists of colors encoded as tuples of (R, G, B, A) floats
in the range [0..1].
paletteTypes: optional list of ColorPaletteType, one for each palette.
paletteLabels: optional list of palette labels. Each lable can be either:
None (no label), a string (for for default English labels), or a
localized string (as a dict keyed with BCP47 language codes).
paletteEntryLabels: optional list of palette entry labels, one for each
palette entry (see paletteLabels).
nameTable: optional name table where to store palette and palette entry
labels. Required if either paletteLabels or paletteEntryLabels is set.
Return:
A new CPAL v0 or v1 table, if custom palette types or labels are specified.
"""
if len({len(p) for p in palettes}) != 1:
raise ColorLibError("color palettes have different lengths")
if (paletteLabels or paletteEntryLabels) and not nameTable:
raise TypeError(
"nameTable is required if palette or palette entries have labels"
)
cpal = C_P_A_L_.table_C_P_A_L_()
cpal.numPaletteEntries = len(palettes[0])
cpal.palettes = []
for i, palette in enumerate(palettes):
colors = []
for j, color in enumerate(palette):
if not isinstance(color, tuple) or len(color) != 4:
raise ColorLibError(
f"In palette[{i}][{j}]: expected (R, G, B, A) tuple, got {color!r}"
)
if any(v > 1 or v < 0 for v in color):
raise ColorLibError(
f"palette[{i}][{j}] has invalid out-of-range [0..1] color: {color!r}"
)
# input colors are RGBA, CPAL encodes them as BGRA
red, green, blue, alpha = color
colors.append(
C_P_A_L_.Color(*(round(v * 255) for v in (blue, green, red, alpha)))
)
cpal.palettes.append(colors)
if any(v is not None for v in (paletteTypes, paletteLabels, paletteEntryLabels)):
cpal.version = 1
if paletteTypes is not None:
if len(paletteTypes) != len(palettes):
raise ColorLibError(
f"Expected {len(palettes)} paletteTypes, got {len(paletteTypes)}"
)
cpal.paletteTypes = [ColorPaletteType(t).value for t in paletteTypes]
else:
cpal.paletteTypes = [C_P_A_L_.table_C_P_A_L_.DEFAULT_PALETTE_TYPE] * len(
palettes
)
if paletteLabels is not None:
if len(paletteLabels) != len(palettes):
raise ColorLibError(
f"Expected {len(palettes)} paletteLabels, got {len(paletteLabels)}"
)
cpal.paletteLabels = buildPaletteLabels(paletteLabels, nameTable)
else:
cpal.paletteLabels = [C_P_A_L_.table_C_P_A_L_.NO_NAME_ID] * len(palettes)
if paletteEntryLabels is not None:
if len(paletteEntryLabels) != cpal.numPaletteEntries:
raise ColorLibError(
f"Expected {cpal.numPaletteEntries} paletteEntryLabels, "
f"got {len(paletteEntryLabels)}"
)
cpal.paletteEntryLabels = buildPaletteLabels(paletteEntryLabels, nameTable)
else:
cpal.paletteEntryLabels = [
C_P_A_L_.table_C_P_A_L_.NO_NAME_ID
] * cpal.numPaletteEntries
else:
cpal.version = 0
return cpal
# COLR v1 tables
# See draft proposal at: https://github.com/googlefonts/colr-gradients-spec
def _is_colrv0_layer(layer: Any) -> bool:
# Consider as COLRv0 layer any sequence of length 2 (be it tuple or list) in which
# the first element is a str (the layerGlyph) and the second element is an int
# (CPAL paletteIndex).
# https://github.com/googlefonts/ufo2ft/issues/426
try:
layerGlyph, paletteIndex = layer
except (TypeError, ValueError):
return False
else:
return isinstance(layerGlyph, str) and isinstance(paletteIndex, int)
def _split_color_glyphs_by_version(
colorGlyphs: _ColorGlyphsDict,
) -> Tuple[_ColorGlyphsV0Dict, _ColorGlyphsDict]:
colorGlyphsV0 = {}
colorGlyphsV1 = {}
for baseGlyph, layers in colorGlyphs.items():
if all(_is_colrv0_layer(l) for l in layers):
colorGlyphsV0[baseGlyph] = layers
else:
colorGlyphsV1[baseGlyph] = layers
# sanity check
assert set(colorGlyphs) == (set(colorGlyphsV0) | set(colorGlyphsV1))
return colorGlyphsV0, colorGlyphsV1
def _reuse_ranges(num_layers: int) -> Generator[Tuple[int, int], None, None]:
# TODO feels like something itertools might have already
for lbound in range(num_layers):
# Reuse of very large #s of layers is relatively unlikely
# +2: we want sequences of at least 2
# otData handles single-record duplication
for ubound in range(
lbound + 2, min(num_layers + 1, lbound + 2 + _MAX_REUSE_LEN)
):
yield (lbound, ubound)
class LayerReuseCache:
reusePool: Mapping[Tuple[Any, ...], int]
tuples: Mapping[int, Tuple[Any, ...]]
keepAlive: List[ot.Paint] # we need id to remain valid
def __init__(self):
self.reusePool = {}
self.tuples = {}
self.keepAlive = []
def _paint_tuple(self, paint: ot.Paint):
# start simple, who even cares about cyclic graphs or interesting field types
def _tuple_safe(value):
if isinstance(value, enum.Enum):
return value
elif hasattr(value, "__dict__"):
return tuple(
(k, _tuple_safe(v)) for k, v in sorted(value.__dict__.items())
)
elif isinstance(value, collections.abc.MutableSequence):
return tuple(_tuple_safe(e) for e in value)
return value
# Cache the tuples for individual Paint instead of the whole sequence
# because the seq could be a transient slice
result = self.tuples.get(id(paint), None)
if result is None:
result = _tuple_safe(paint)
self.tuples[id(paint)] = result
self.keepAlive.append(paint)
return result
def _as_tuple(self, paints: Sequence[ot.Paint]) -> Tuple[Any, ...]:
return tuple(self._paint_tuple(p) for p in paints)
def try_reuse(self, layers: List[ot.Paint]) -> List[ot.Paint]:
found_reuse = True
while found_reuse:
found_reuse = False
ranges = sorted(
_reuse_ranges(len(layers)),
key=lambda t: (t[1] - t[0], t[1], t[0]),
reverse=True,
)
for lbound, ubound in ranges:
reuse_lbound = self.reusePool.get(
self._as_tuple(layers[lbound:ubound]), -1
)
if reuse_lbound == -1:
continue
new_slice = ot.Paint()
new_slice.Format = int(ot.PaintFormat.PaintColrLayers)
new_slice.NumLayers = ubound - lbound
new_slice.FirstLayerIndex = reuse_lbound
layers = layers[:lbound] + [new_slice] + layers[ubound:]
found_reuse = True
break
return layers
def add(self, layers: List[ot.Paint], first_layer_index: int):
for lbound, ubound in _reuse_ranges(len(layers)):
self.reusePool[self._as_tuple(layers[lbound:ubound])] = (
lbound + first_layer_index
)
class LayerListBuilder:
layers: List[ot.Paint]
cache: LayerReuseCache
allowLayerReuse: bool
def __init__(self, *, allowLayerReuse=True):
self.layers = []
if allowLayerReuse:
self.cache = LayerReuseCache()
else:
self.cache = None
# We need to intercept construction of PaintColrLayers
callbacks = _buildPaintCallbacks()
callbacks[
(
BuildCallback.BEFORE_BUILD,
ot.Paint,
ot.PaintFormat.PaintColrLayers,
)
] = self._beforeBuildPaintColrLayers
self.tableBuilder = TableBuilder(callbacks)
# COLR layers is unusual in that it modifies shared state
# so we need a callback into an object
def _beforeBuildPaintColrLayers(self, dest, source):
# Sketchy gymnastics: a sequence input will have dropped it's layers
# into NumLayers; get it back
if isinstance(source.get("NumLayers", None), collections.abc.Sequence):
layers = source["NumLayers"]
else:
layers = source["Layers"]
# Convert maps seqs or whatever into typed objects
layers = [self.buildPaint(l) for l in layers]
# No reason to have a colr layers with just one entry
if len(layers) == 1:
return layers[0], {}
if self.cache is not None:
# Look for reuse, with preference to longer sequences
# This may make the layer list smaller
layers = self.cache.try_reuse(layers)
# The layer list is now final; if it's too big we need to tree it
is_tree = len(layers) > MAX_PAINT_COLR_LAYER_COUNT
layers = build_n_ary_tree(layers, n=MAX_PAINT_COLR_LAYER_COUNT)
# We now have a tree of sequences with Paint leaves.
# Convert the sequences into PaintColrLayers.
def listToColrLayers(layer):
if isinstance(layer, collections.abc.Sequence):
return self.buildPaint(
{
"Format": ot.PaintFormat.PaintColrLayers,
"Layers": [listToColrLayers(l) for l in layer],
}
)
return layer
layers = [listToColrLayers(l) for l in layers]
# No reason to have a colr layers with just one entry
if len(layers) == 1:
return layers[0], {}
paint = ot.Paint()
paint.Format = int(ot.PaintFormat.PaintColrLayers)
paint.NumLayers = len(layers)
paint.FirstLayerIndex = len(self.layers)
self.layers.extend(layers)
# Register our parts for reuse provided we aren't a tree
# If we are a tree the leaves registered for reuse and that will suffice
if self.cache is not None and not is_tree:
self.cache.add(layers, paint.FirstLayerIndex)
# we've fully built dest; empty source prevents generalized build from kicking in
return paint, {}
def buildPaint(self, paint: _PaintInput) -> ot.Paint:
return self.tableBuilder.build(ot.Paint, paint)
def build(self) -> Optional[ot.LayerList]:
if not self.layers:
return None
layers = ot.LayerList()
layers.LayerCount = len(self.layers)
layers.Paint = self.layers
return layers
def buildBaseGlyphPaintRecord(
baseGlyph: str, layerBuilder: LayerListBuilder, paint: _PaintInput
) -> ot.BaseGlyphList:
self = ot.BaseGlyphPaintRecord()
self.BaseGlyph = baseGlyph
self.Paint = layerBuilder.buildPaint(paint)
return self
def _format_glyph_errors(errors: Mapping[str, Exception]) -> str:
lines = []
for baseGlyph, error in sorted(errors.items()):
lines.append(f" {baseGlyph} => {type(error).__name__}: {error}")
return "\n".join(lines)
def buildColrV1(
colorGlyphs: _ColorGlyphsDict,
glyphMap: Optional[Mapping[str, int]] = None,
*,
allowLayerReuse: bool = True,
) -> Tuple[Optional[ot.LayerList], ot.BaseGlyphList]:
if glyphMap is not None:
colorGlyphItems = sorted(
colorGlyphs.items(), key=lambda item: glyphMap[item[0]]
)
else:
colorGlyphItems = colorGlyphs.items()
errors = {}
baseGlyphs = []
layerBuilder = LayerListBuilder(allowLayerReuse=allowLayerReuse)
for baseGlyph, paint in colorGlyphItems:
try:
baseGlyphs.append(buildBaseGlyphPaintRecord(baseGlyph, layerBuilder, paint))
except (ColorLibError, OverflowError, ValueError, TypeError) as e:
errors[baseGlyph] = e
if errors:
failed_glyphs = _format_glyph_errors(errors)
exc = ColorLibError(f"Failed to build BaseGlyphList:\n{failed_glyphs}")
exc.errors = errors
raise exc from next(iter(errors.values()))
layers = layerBuilder.build()
glyphs = ot.BaseGlyphList()
glyphs.BaseGlyphCount = len(baseGlyphs)
glyphs.BaseGlyphPaintRecord = baseGlyphs
return (layers, glyphs)

View File

@ -0,0 +1,2 @@
class ColorLibError(Exception):
pass

View File

@ -0,0 +1,143 @@
"""Helpers for manipulating 2D points and vectors in COLR table."""
from math import copysign, cos, hypot, isclose, pi
from fontTools.misc.roundTools import otRound
def _vector_between(origin, target):
return (target[0] - origin[0], target[1] - origin[1])
def _round_point(pt):
return (otRound(pt[0]), otRound(pt[1]))
def _unit_vector(vec):
length = hypot(*vec)
if length == 0:
return None
return (vec[0] / length, vec[1] / length)
_CIRCLE_INSIDE_TOLERANCE = 1e-4
# The unit vector's X and Y components are respectively
# U = (cos(α), sin(α))
# where α is the angle between the unit vector and the positive x axis.
_UNIT_VECTOR_THRESHOLD = cos(3 / 8 * pi) # == sin(1/8 * pi) == 0.38268343236508984
def _rounding_offset(direction):
# Return 2-tuple of -/+ 1.0 or 0.0 approximately based on the direction vector.
# We divide the unit circle in 8 equal slices oriented towards the cardinal
# (N, E, S, W) and intermediate (NE, SE, SW, NW) directions. To each slice we
# map one of the possible cases: -1, 0, +1 for either X and Y coordinate.
# E.g. Return (+1.0, -1.0) if unit vector is oriented towards SE, or
# (-1.0, 0.0) if it's pointing West, etc.
uv = _unit_vector(direction)
if not uv:
return (0, 0)
result = []
for uv_component in uv:
if -_UNIT_VECTOR_THRESHOLD <= uv_component < _UNIT_VECTOR_THRESHOLD:
# unit vector component near 0: direction almost orthogonal to the
# direction of the current axis, thus keep coordinate unchanged
result.append(0)
else:
# nudge coord by +/- 1.0 in direction of unit vector
result.append(copysign(1.0, uv_component))
return tuple(result)
class Circle:
def __init__(self, centre, radius):
self.centre = centre
self.radius = radius
def __repr__(self):
return f"Circle(centre={self.centre}, radius={self.radius})"
def round(self):
return Circle(_round_point(self.centre), otRound(self.radius))
def inside(self, outer_circle, tolerance=_CIRCLE_INSIDE_TOLERANCE):
dist = self.radius + hypot(*_vector_between(self.centre, outer_circle.centre))
return (
isclose(outer_circle.radius, dist, rel_tol=_CIRCLE_INSIDE_TOLERANCE)
or outer_circle.radius > dist
)
def concentric(self, other):
return self.centre == other.centre
def move(self, dx, dy):
self.centre = (self.centre[0] + dx, self.centre[1] + dy)
def round_start_circle_stable_containment(c0, r0, c1, r1):
"""Round start circle so that it stays inside/outside end circle after rounding.
The rounding of circle coordinates to integers may cause an abrupt change
if the start circle c0 is so close to the end circle c1's perimiter that
it ends up falling outside (or inside) as a result of the rounding.
To keep the gradient unchanged, we nudge it in the right direction.
See:
https://github.com/googlefonts/colr-gradients-spec/issues/204
https://github.com/googlefonts/picosvg/issues/158
"""
start, end = Circle(c0, r0), Circle(c1, r1)
inside_before_round = start.inside(end)
round_start = start.round()
round_end = end.round()
inside_after_round = round_start.inside(round_end)
if inside_before_round == inside_after_round:
return round_start
elif inside_after_round:
# start was outside before rounding: we need to push start away from end
direction = _vector_between(round_end.centre, round_start.centre)
radius_delta = +1.0
else:
# start was inside before rounding: we need to push start towards end
direction = _vector_between(round_start.centre, round_end.centre)
radius_delta = -1.0
dx, dy = _rounding_offset(direction)
# At most 2 iterations ought to be enough to converge. Before the loop, we
# know the start circle didn't keep containment after normal rounding; thus
# we continue adjusting by -/+ 1.0 until containment is restored.
# Normal rounding can at most move each coordinates -/+0.5; in the worst case
# both the start and end circle's centres and radii will be rounded in opposite
# directions, e.g. when they move along a 45 degree diagonal:
# c0 = (1.5, 1.5) ===> (2.0, 2.0)
# r0 = 0.5 ===> 1.0
# c1 = (0.499, 0.499) ===> (0.0, 0.0)
# r1 = 2.499 ===> 2.0
# In this example, the relative distance between the circles, calculated
# as r1 - (r0 + distance(c0, c1)) is initially 0.57437 (c0 is inside c1), and
# -1.82842 after rounding (c0 is now outside c1). Nudging c0 by -1.0 on both
# x and y axes moves it towards c1 by hypot(-1.0, -1.0) = 1.41421. Two of these
# moves cover twice that distance, which is enough to restore containment.
max_attempts = 2
for _ in range(max_attempts):
if round_start.concentric(round_end):
# can't move c0 towards c1 (they are the same), so we change the radius
round_start.radius += radius_delta
assert round_start.radius >= 0
else:
round_start.move(dx, dy)
if inside_before_round == round_start.inside(round_end):
break
else: # likely a bug
raise AssertionError(
f"Rounding circle {start} "
f"{'inside' if inside_before_round else 'outside'} "
f"{end} failed after {max_attempts} attempts!"
)
return round_start

View File

@ -0,0 +1,223 @@
"""
colorLib.table_builder: Generic helper for filling in BaseTable derivatives from tuples and maps and such.
"""
import collections
import enum
from fontTools.ttLib.tables.otBase import (
BaseTable,
FormatSwitchingBaseTable,
UInt8FormatSwitchingBaseTable,
)
from fontTools.ttLib.tables.otConverters import (
ComputedInt,
SimpleValue,
Struct,
Short,
UInt8,
UShort,
IntValue,
FloatValue,
OptionalValue,
)
from fontTools.misc.roundTools import otRound
class BuildCallback(enum.Enum):
"""Keyed on (BEFORE_BUILD, class[, Format if available]).
Receives (dest, source).
Should return (dest, source), which can be new objects.
"""
BEFORE_BUILD = enum.auto()
"""Keyed on (AFTER_BUILD, class[, Format if available]).
Receives (dest).
Should return dest, which can be a new object.
"""
AFTER_BUILD = enum.auto()
"""Keyed on (CREATE_DEFAULT, class[, Format if available]).
Receives no arguments.
Should return a new instance of class.
"""
CREATE_DEFAULT = enum.auto()
def _assignable(convertersByName):
return {k: v for k, v in convertersByName.items() if not isinstance(v, ComputedInt)}
def _isNonStrSequence(value):
return isinstance(value, collections.abc.Sequence) and not isinstance(value, str)
def _split_format(cls, source):
if _isNonStrSequence(source):
assert len(source) > 0, f"{cls} needs at least format from {source}"
fmt, remainder = source[0], source[1:]
elif isinstance(source, collections.abc.Mapping):
assert "Format" in source, f"{cls} needs at least Format from {source}"
remainder = source.copy()
fmt = remainder.pop("Format")
else:
raise ValueError(f"Not sure how to populate {cls} from {source}")
assert isinstance(
fmt, collections.abc.Hashable
), f"{cls} Format is not hashable: {fmt!r}"
assert fmt in cls.convertersByName, f"{cls} invalid Format: {fmt!r}"
return fmt, remainder
class TableBuilder:
"""
Helps to populate things derived from BaseTable from maps, tuples, etc.
A table of lifecycle callbacks may be provided to add logic beyond what is possible
based on otData info for the target class. See BuildCallbacks.
"""
def __init__(self, callbackTable=None):
if callbackTable is None:
callbackTable = {}
self._callbackTable = callbackTable
def _convert(self, dest, field, converter, value):
enumClass = getattr(converter, "enumClass", None)
if enumClass:
if isinstance(value, enumClass):
pass
elif isinstance(value, str):
try:
value = getattr(enumClass, value.upper())
except AttributeError:
raise ValueError(f"{value} is not a valid {enumClass}")
else:
value = enumClass(value)
elif isinstance(converter, IntValue):
value = otRound(value)
elif isinstance(converter, FloatValue):
value = float(value)
elif isinstance(converter, Struct):
if converter.repeat:
if _isNonStrSequence(value):
value = [self.build(converter.tableClass, v) for v in value]
else:
value = [self.build(converter.tableClass, value)]
setattr(dest, converter.repeat, len(value))
else:
value = self.build(converter.tableClass, value)
elif callable(converter):
value = converter(value)
setattr(dest, field, value)
def build(self, cls, source):
assert issubclass(cls, BaseTable)
if isinstance(source, cls):
return source
callbackKey = (cls,)
fmt = None
if issubclass(cls, FormatSwitchingBaseTable):
fmt, source = _split_format(cls, source)
callbackKey = (cls, fmt)
dest = self._callbackTable.get(
(BuildCallback.CREATE_DEFAULT,) + callbackKey, lambda: cls()
)()
assert isinstance(dest, cls)
convByName = _assignable(cls.convertersByName)
skippedFields = set()
# For format switchers we need to resolve converters based on format
if issubclass(cls, FormatSwitchingBaseTable):
dest.Format = fmt
convByName = _assignable(convByName[dest.Format])
skippedFields.add("Format")
# Convert sequence => mapping so before thunk only has to handle one format
if _isNonStrSequence(source):
# Sequence (typically list or tuple) assumed to match fields in declaration order
assert len(source) <= len(
convByName
), f"Sequence of {len(source)} too long for {cls}; expected <= {len(convByName)} values"
source = dict(zip(convByName.keys(), source))
dest, source = self._callbackTable.get(
(BuildCallback.BEFORE_BUILD,) + callbackKey, lambda d, s: (d, s)
)(dest, source)
if isinstance(source, collections.abc.Mapping):
for field, value in source.items():
if field in skippedFields:
continue
converter = convByName.get(field, None)
if not converter:
raise ValueError(
f"Unrecognized field {field} for {cls}; expected one of {sorted(convByName.keys())}"
)
self._convert(dest, field, converter, value)
else:
# let's try as a 1-tuple
dest = self.build(cls, (source,))
for field, conv in convByName.items():
if not hasattr(dest, field) and isinstance(conv, OptionalValue):
setattr(dest, field, conv.DEFAULT)
dest = self._callbackTable.get(
(BuildCallback.AFTER_BUILD,) + callbackKey, lambda d: d
)(dest)
return dest
class TableUnbuilder:
def __init__(self, callbackTable=None):
if callbackTable is None:
callbackTable = {}
self._callbackTable = callbackTable
def unbuild(self, table):
assert isinstance(table, BaseTable)
source = {}
callbackKey = (type(table),)
if isinstance(table, FormatSwitchingBaseTable):
source["Format"] = int(table.Format)
callbackKey += (table.Format,)
for converter in table.getConverters():
if isinstance(converter, ComputedInt):
continue
value = getattr(table, converter.name)
enumClass = getattr(converter, "enumClass", None)
if enumClass:
source[converter.name] = value.name.lower()
elif isinstance(converter, Struct):
if converter.repeat:
source[converter.name] = [self.unbuild(v) for v in value]
else:
source[converter.name] = self.unbuild(value)
elif isinstance(converter, SimpleValue):
# "simple" values (e.g. int, float, str) need no further un-building
source[converter.name] = value
else:
raise NotImplementedError(
"Don't know how unbuild {value!r} with {converter!r}"
)
source = self._callbackTable.get(callbackKey, lambda s: s)(source)
return source

View File

@ -0,0 +1,81 @@
from fontTools.ttLib.tables import otTables as ot
from .table_builder import TableUnbuilder
def unbuildColrV1(layerList, baseGlyphList):
layers = []
if layerList:
layers = layerList.Paint
unbuilder = LayerListUnbuilder(layers)
return {
rec.BaseGlyph: unbuilder.unbuildPaint(rec.Paint)
for rec in baseGlyphList.BaseGlyphPaintRecord
}
def _flatten_layers(lst):
for paint in lst:
if paint["Format"] == ot.PaintFormat.PaintColrLayers:
yield from _flatten_layers(paint["Layers"])
else:
yield paint
class LayerListUnbuilder:
def __init__(self, layers):
self.layers = layers
callbacks = {
(
ot.Paint,
ot.PaintFormat.PaintColrLayers,
): self._unbuildPaintColrLayers,
}
self.tableUnbuilder = TableUnbuilder(callbacks)
def unbuildPaint(self, paint):
assert isinstance(paint, ot.Paint)
return self.tableUnbuilder.unbuild(paint)
def _unbuildPaintColrLayers(self, source):
assert source["Format"] == ot.PaintFormat.PaintColrLayers
layers = list(
_flatten_layers(
[
self.unbuildPaint(childPaint)
for childPaint in self.layers[
source["FirstLayerIndex"] : source["FirstLayerIndex"]
+ source["NumLayers"]
]
]
)
)
if len(layers) == 1:
return layers[0]
return {"Format": source["Format"], "Layers": layers}
if __name__ == "__main__":
from pprint import pprint
import sys
from fontTools.ttLib import TTFont
try:
fontfile = sys.argv[1]
except IndexError:
sys.exit("usage: fonttools colorLib.unbuilder FONTFILE")
font = TTFont(fontfile)
colr = font["COLR"]
if colr.version < 1:
sys.exit(f"error: No COLR table version=1 found in {fontfile}")
colorGlyphs = unbuildColrV1(
colr.table.LayerList,
colr.table.BaseGlyphList,
)
pprint(colorGlyphs)

View File

@ -0,0 +1,75 @@
"""
Define all configuration options that can affect the working of fontTools
modules. E.g. optimization levels of varLib IUP, otlLib GPOS compression level,
etc. If this file gets too big, split it into smaller files per-module.
An instance of the Config class can be attached to a TTFont object, so that
the various modules can access their configuration options from it.
"""
from textwrap import dedent
from fontTools.misc.configTools import *
class Config(AbstractConfig):
options = Options()
OPTIONS = Config.options
Config.register_option(
name="fontTools.otlLib.optimize.gpos:COMPRESSION_LEVEL",
help=dedent(
"""\
GPOS Lookup type 2 (PairPos) compression level:
0 = do not attempt to compact PairPos lookups;
1 to 8 = create at most 1 to 8 new subtables for each existing
subtable, provided that it would yield a 50%% file size saving;
9 = create as many new subtables as needed to yield a file size saving.
Default: 0.
This compaction aims to save file size, by splitting large class
kerning subtables (Format 2) that contain many zero values into
smaller and denser subtables. It's a trade-off between the overhead
of several subtables versus the sparseness of one big subtable.
See the pull request: https://github.com/fonttools/fonttools/pull/2326
"""
),
default=0,
parse=int,
validate=lambda v: v in range(10),
)
Config.register_option(
name="fontTools.ttLib.tables.otBase:USE_HARFBUZZ_REPACKER",
help=dedent(
"""\
FontTools tries to use the HarfBuzz Repacker to serialize GPOS/GSUB tables
if the uharfbuzz python bindings are importable, otherwise falls back to its
slower, less efficient serializer. Set to False to always use the latter.
Set to True to explicitly request the HarfBuzz Repacker (will raise an
error if uharfbuzz cannot be imported).
"""
),
default=None,
parse=Option.parse_optional_bool,
validate=Option.validate_optional_bool,
)
Config.register_option(
name="fontTools.otlLib.builder:WRITE_GPOS7",
help=dedent(
"""\
macOS before 13.2 didnt support GPOS LookupType 7 (non-chaining
ContextPos lookups), so FontTools.otlLib.builder disables a file size
optimisation that would use LookupType 7 instead of 8 when there is no
chaining (no prefix or suffix). Set to True to enable the optimization.
"""
),
default=False,
parse=Option.parse_optional_bool,
validate=Option.validate_optional_bool,
)

View File

@ -0,0 +1,15 @@
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .cu2qu import *

View File

@ -0,0 +1,6 @@
import sys
from .cli import _main as main
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,54 @@
"""Benchmark the cu2qu algorithm performance."""
from .cu2qu import *
import random
import timeit
MAX_ERR = 0.05
def generate_curve():
return [
tuple(float(random.randint(0, 2048)) for coord in range(2))
for point in range(4)
]
def setup_curve_to_quadratic():
return generate_curve(), MAX_ERR
def setup_curves_to_quadratic():
num_curves = 3
return ([generate_curve() for curve in range(num_curves)], [MAX_ERR] * num_curves)
def run_benchmark(module, function, setup_suffix="", repeat=5, number=1000):
setup_func = "setup_" + function
if setup_suffix:
print("%s with %s:" % (function, setup_suffix), end="")
setup_func += "_" + setup_suffix
else:
print("%s:" % function, end="")
def wrapper(function, setup_func):
function = globals()[function]
setup_func = globals()[setup_func]
def wrapped():
return function(*setup_func())
return wrapped
results = timeit.repeat(wrapper(function, setup_func), repeat=repeat, number=number)
print("\t%5.1fus" % (min(results) * 1000000.0 / number))
def main():
run_benchmark("cu2qu", "curve_to_quadratic")
run_benchmark("cu2qu", "curves_to_quadratic")
if __name__ == "__main__":
random.seed(1)
main()

View File

@ -0,0 +1,198 @@
import os
import argparse
import logging
import shutil
import multiprocessing as mp
from contextlib import closing
from functools import partial
import fontTools
from .ufo import font_to_quadratic, fonts_to_quadratic
ufo_module = None
try:
import ufoLib2 as ufo_module
except ImportError:
try:
import defcon as ufo_module
except ImportError as e:
pass
logger = logging.getLogger("fontTools.cu2qu")
def _cpu_count():
try:
return mp.cpu_count()
except NotImplementedError: # pragma: no cover
return 1
def open_ufo(path):
if hasattr(ufo_module.Font, "open"): # ufoLib2
return ufo_module.Font.open(path)
return ufo_module.Font(path) # defcon
def _font_to_quadratic(input_path, output_path=None, **kwargs):
ufo = open_ufo(input_path)
logger.info("Converting curves for %s", input_path)
if font_to_quadratic(ufo, **kwargs):
logger.info("Saving %s", output_path)
if output_path:
ufo.save(output_path)
else:
ufo.save() # save in-place
elif output_path:
_copytree(input_path, output_path)
def _samepath(path1, path2):
# TODO on python3+, there's os.path.samefile
path1 = os.path.normcase(os.path.abspath(os.path.realpath(path1)))
path2 = os.path.normcase(os.path.abspath(os.path.realpath(path2)))
return path1 == path2
def _copytree(input_path, output_path):
if _samepath(input_path, output_path):
logger.debug("input and output paths are the same file; skipped copy")
return
if os.path.exists(output_path):
shutil.rmtree(output_path)
shutil.copytree(input_path, output_path)
def _main(args=None):
"""Convert a UFO font from cubic to quadratic curves"""
parser = argparse.ArgumentParser(prog="cu2qu")
parser.add_argument("--version", action="version", version=fontTools.__version__)
parser.add_argument(
"infiles",
nargs="+",
metavar="INPUT",
help="one or more input UFO source file(s).",
)
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument(
"-e",
"--conversion-error",
type=float,
metavar="ERROR",
default=None,
help="maxiumum approximation error measured in EM (default: 0.001)",
)
parser.add_argument(
"-m",
"--mixed",
default=False,
action="store_true",
help="whether to used mixed quadratic and cubic curves",
)
parser.add_argument(
"--keep-direction",
dest="reverse_direction",
action="store_false",
help="do not reverse the contour direction",
)
mode_parser = parser.add_mutually_exclusive_group()
mode_parser.add_argument(
"-i",
"--interpolatable",
action="store_true",
help="whether curve conversion should keep interpolation compatibility",
)
mode_parser.add_argument(
"-j",
"--jobs",
type=int,
nargs="?",
default=1,
const=_cpu_count(),
metavar="N",
help="Convert using N multiple processes (default: %(default)s)",
)
output_parser = parser.add_mutually_exclusive_group()
output_parser.add_argument(
"-o",
"--output-file",
default=None,
metavar="OUTPUT",
help=(
"output filename for the converted UFO. By default fonts are "
"modified in place. This only works with a single input."
),
)
output_parser.add_argument(
"-d",
"--output-dir",
default=None,
metavar="DIRECTORY",
help="output directory where to save converted UFOs",
)
options = parser.parse_args(args)
if ufo_module is None:
parser.error("Either ufoLib2 or defcon are required to run this script.")
if not options.verbose:
level = "WARNING"
elif options.verbose == 1:
level = "INFO"
else:
level = "DEBUG"
logging.basicConfig(level=level)
if len(options.infiles) > 1 and options.output_file:
parser.error("-o/--output-file can't be used with multile inputs")
if options.output_dir:
output_dir = options.output_dir
if not os.path.exists(output_dir):
os.mkdir(output_dir)
elif not os.path.isdir(output_dir):
parser.error("'%s' is not a directory" % output_dir)
output_paths = [
os.path.join(output_dir, os.path.basename(p)) for p in options.infiles
]
elif options.output_file:
output_paths = [options.output_file]
else:
# save in-place
output_paths = [None] * len(options.infiles)
kwargs = dict(
dump_stats=options.verbose > 0,
max_err_em=options.conversion_error,
reverse_direction=options.reverse_direction,
all_quadratic=False if options.mixed else True,
)
if options.interpolatable:
logger.info("Converting curves compatibly")
ufos = [open_ufo(infile) for infile in options.infiles]
if fonts_to_quadratic(ufos, **kwargs):
for ufo, output_path in zip(ufos, output_paths):
logger.info("Saving %s", output_path)
if output_path:
ufo.save(output_path)
else:
ufo.save()
else:
for input_path, output_path in zip(options.infiles, output_paths):
if output_path:
_copytree(input_path, output_path)
else:
jobs = min(len(options.infiles), options.jobs) if options.jobs > 1 else 1
if jobs > 1:
func = partial(_font_to_quadratic, **kwargs)
logger.info("Running %d parallel processes", jobs)
with closing(mp.Pool(jobs)) as pool:
pool.starmap(func, zip(options.infiles, output_paths))
else:
for input_path, output_path in zip(options.infiles, output_paths):
_font_to_quadratic(input_path, output_path, **kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,534 @@
# cython: language_level=3
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cython
COMPILED = cython.compiled
except (AttributeError, ImportError):
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
COMPILED = False
import math
from .errors import Error as Cu2QuError, ApproxNotFoundError
__all__ = ["curve_to_quadratic", "curves_to_quadratic"]
MAX_N = 100
NAN = float("NaN")
@cython.cfunc
@cython.inline
@cython.returns(cython.double)
@cython.locals(v1=cython.complex, v2=cython.complex)
def dot(v1, v2):
"""Return the dot product of two vectors.
Args:
v1 (complex): First vector.
v2 (complex): Second vector.
Returns:
double: Dot product.
"""
return (v1 * v2.conjugate()).real
@cython.cfunc
@cython.inline
@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
@cython.locals(
_1=cython.complex, _2=cython.complex, _3=cython.complex, _4=cython.complex
)
def calc_cubic_points(a, b, c, d):
_1 = d
_2 = (c / 3.0) + d
_3 = (b + c) / 3.0 + _2
_4 = a + d + c + b
return _1, _2, _3, _4
@cython.cfunc
@cython.inline
@cython.locals(
p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
)
@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
def calc_cubic_parameters(p0, p1, p2, p3):
c = (p1 - p0) * 3.0
b = (p2 - p1) * 3.0 - c
d = p0
a = p3 - d - c - b
return a, b, c, d
@cython.cfunc
@cython.inline
@cython.locals(
p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
)
def split_cubic_into_n_iter(p0, p1, p2, p3, n):
"""Split a cubic Bezier into n equal parts.
Splits the curve into `n` equal parts by curve time.
(t=0..1/n, t=1/n..2/n, ...)
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
Returns:
An iterator yielding the control points (four complex values) of the
subcurves.
"""
# Hand-coded special-cases
if n == 2:
return iter(split_cubic_into_two(p0, p1, p2, p3))
if n == 3:
return iter(split_cubic_into_three(p0, p1, p2, p3))
if n == 4:
a, b = split_cubic_into_two(p0, p1, p2, p3)
return iter(
split_cubic_into_two(a[0], a[1], a[2], a[3])
+ split_cubic_into_two(b[0], b[1], b[2], b[3])
)
if n == 6:
a, b = split_cubic_into_two(p0, p1, p2, p3)
return iter(
split_cubic_into_three(a[0], a[1], a[2], a[3])
+ split_cubic_into_three(b[0], b[1], b[2], b[3])
)
return _split_cubic_into_n_gen(p0, p1, p2, p3, n)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
n=cython.int,
)
@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
@cython.locals(
dt=cython.double, delta_2=cython.double, delta_3=cython.double, i=cython.int
)
@cython.locals(
a1=cython.complex, b1=cython.complex, c1=cython.complex, d1=cython.complex
)
def _split_cubic_into_n_gen(p0, p1, p2, p3, n):
a, b, c, d = calc_cubic_parameters(p0, p1, p2, p3)
dt = 1 / n
delta_2 = dt * dt
delta_3 = dt * delta_2
for i in range(n):
t1 = i * dt
t1_2 = t1 * t1
# calc new a, b, c and d
a1 = a * delta_3
b1 = (3 * a * t1 + b) * delta_2
c1 = (2 * b * t1 + c + 3 * a * t1_2) * dt
d1 = a * t1 * t1_2 + b * t1_2 + c * t1 + d
yield calc_cubic_points(a1, b1, c1, d1)
@cython.cfunc
@cython.inline
@cython.locals(
p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def split_cubic_into_two(p0, p1, p2, p3):
"""Split a cubic Bezier into two equal parts.
Splits the curve into two equal parts at t = 0.5
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
Returns:
tuple: Two cubic Beziers (each expressed as a tuple of four complex
values).
"""
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return (
(p0, (p0 + p1) * 0.5, mid - deriv3, mid),
(mid, mid + deriv3, (p2 + p3) * 0.5, p3),
)
@cython.cfunc
@cython.inline
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(
mid1=cython.complex,
deriv1=cython.complex,
mid2=cython.complex,
deriv2=cython.complex,
)
def split_cubic_into_three(p0, p1, p2, p3):
"""Split a cubic Bezier into three equal parts.
Splits the curve into three equal parts at t = 1/3 and t = 2/3
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
Returns:
tuple: Three cubic Beziers (each expressed as a tuple of four complex
values).
"""
mid1 = (8 * p0 + 12 * p1 + 6 * p2 + p3) * (1 / 27)
deriv1 = (p3 + 3 * p2 - 4 * p0) * (1 / 27)
mid2 = (p0 + 6 * p1 + 12 * p2 + 8 * p3) * (1 / 27)
deriv2 = (4 * p3 - 3 * p1 - p0) * (1 / 27)
return (
(p0, (2 * p0 + p1) / 3.0, mid1 - deriv1, mid1),
(mid1, mid1 + deriv1, mid2 - deriv2, mid2),
(mid2, mid2 + deriv2, (p2 + 2 * p3) / 3.0, p3),
)
@cython.cfunc
@cython.inline
@cython.returns(cython.complex)
@cython.locals(
t=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(_p1=cython.complex, _p2=cython.complex)
def cubic_approx_control(t, p0, p1, p2, p3):
"""Approximate a cubic Bezier using a quadratic one.
Args:
t (double): Position of control point.
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
Returns:
complex: Location of candidate control point on quadratic curve.
"""
_p1 = p0 + (p1 - p0) * 1.5
_p2 = p3 + (p2 - p3) * 1.5
return _p1 + (_p2 - _p1) * t
@cython.cfunc
@cython.inline
@cython.returns(cython.complex)
@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex)
@cython.locals(ab=cython.complex, cd=cython.complex, p=cython.complex, h=cython.double)
def calc_intersect(a, b, c, d):
"""Calculate the intersection of two lines.
Args:
a (complex): Start point of first line.
b (complex): End point of first line.
c (complex): Start point of second line.
d (complex): End point of second line.
Returns:
complex: Location of intersection if one present, ``complex(NaN,NaN)``
if no intersection was found.
"""
ab = b - a
cd = d - c
p = ab * 1j
try:
h = dot(p, a - c) / dot(p, cd)
except ZeroDivisionError:
return complex(NAN, NAN)
return c + cd * h
@cython.cfunc
@cython.returns(cython.int)
@cython.locals(
tolerance=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
"""Check if a cubic Bezier lies within a given distance of the origin.
"Origin" means *the* origin (0,0), not the start of the curve. Note that no
checks are made on the start and end positions of the curve; this function
only checks the inside of the curve.
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
tolerance (double): Distance from origin.
Returns:
bool: True if the cubic Bezier ``p`` entirely lies within a distance
``tolerance`` of the origin, False otherwise.
"""
# First check p2 then p1, as p2 has higher error early on.
if abs(p2) <= tolerance and abs(p1) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return cubic_farthest_fit_inside(
p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance
) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance)
@cython.cfunc
@cython.inline
@cython.locals(tolerance=cython.double)
@cython.locals(
q1=cython.complex,
c0=cython.complex,
c1=cython.complex,
c2=cython.complex,
c3=cython.complex,
)
def cubic_approx_quadratic(cubic, tolerance):
"""Approximate a cubic Bezier with a single quadratic within a given tolerance.
Args:
cubic (sequence): Four complex numbers representing control points of
the cubic Bezier curve.
tolerance (double): Permitted deviation from the original curve.
Returns:
Three complex numbers representing control points of the quadratic
curve if it fits within the given tolerance, or ``None`` if no suitable
curve could be calculated.
"""
q1 = calc_intersect(cubic[0], cubic[1], cubic[2], cubic[3])
if math.isnan(q1.imag):
return None
c0 = cubic[0]
c3 = cubic[3]
c1 = c0 + (q1 - c0) * (2 / 3)
c2 = c3 + (q1 - c3) * (2 / 3)
if not cubic_farthest_fit_inside(0, c1 - cubic[1], c2 - cubic[2], 0, tolerance):
return None
return c0, q1, c3
@cython.cfunc
@cython.locals(n=cython.int, tolerance=cython.double)
@cython.locals(i=cython.int)
@cython.locals(all_quadratic=cython.int)
@cython.locals(
c0=cython.complex, c1=cython.complex, c2=cython.complex, c3=cython.complex
)
@cython.locals(
q0=cython.complex,
q1=cython.complex,
next_q1=cython.complex,
q2=cython.complex,
d1=cython.complex,
)
def cubic_approx_spline(cubic, n, tolerance, all_quadratic):
"""Approximate a cubic Bezier curve with a spline of n quadratics.
Args:
cubic (sequence): Four complex numbers representing control points of
the cubic Bezier curve.
n (int): Number of quadratic Bezier curves in the spline.
tolerance (double): Permitted deviation from the original curve.
Returns:
A list of ``n+2`` complex numbers, representing control points of the
quadratic spline if it fits within the given tolerance, or ``None`` if
no suitable spline could be calculated.
"""
if n == 1:
return cubic_approx_quadratic(cubic, tolerance)
if n == 2 and all_quadratic == False:
return cubic
cubics = split_cubic_into_n_iter(cubic[0], cubic[1], cubic[2], cubic[3], n)
# calculate the spline of quadratics and check errors at the same time.
next_cubic = next(cubics)
next_q1 = cubic_approx_control(
0, next_cubic[0], next_cubic[1], next_cubic[2], next_cubic[3]
)
q2 = cubic[0]
d1 = 0j
spline = [cubic[0], next_q1]
for i in range(1, n + 1):
# Current cubic to convert
c0, c1, c2, c3 = next_cubic
# Current quadratic approximation of current cubic
q0 = q2
q1 = next_q1
if i < n:
next_cubic = next(cubics)
next_q1 = cubic_approx_control(
i / (n - 1), next_cubic[0], next_cubic[1], next_cubic[2], next_cubic[3]
)
spline.append(next_q1)
q2 = (q1 + next_q1) * 0.5
else:
q2 = c3
# End-point deltas
d0 = d1
d1 = q2 - c3
if abs(d1) > tolerance or not cubic_farthest_fit_inside(
d0,
q0 + (q1 - q0) * (2 / 3) - c1,
q2 + (q1 - q2) * (2 / 3) - c2,
d1,
tolerance,
):
return None
spline.append(cubic[3])
return spline
@cython.locals(max_err=cython.double)
@cython.locals(n=cython.int)
@cython.locals(all_quadratic=cython.int)
def curve_to_quadratic(curve, max_err, all_quadratic=True):
"""Approximate a cubic Bezier curve with a spline of n quadratics.
Args:
cubic (sequence): Four 2D tuples representing control points of
the cubic Bezier curve.
max_err (double): Permitted deviation from the original curve.
all_quadratic (bool): If True (default) returned value is a
quadratic spline. If False, it's either a single quadratic
curve or a single cubic curve.
Returns:
If all_quadratic is True: A list of 2D tuples, representing
control points of the quadratic spline if it fits within the
given tolerance, or ``None`` if no suitable spline could be
calculated.
If all_quadratic is False: Either a quadratic curve (if length
of output is 3), or a cubic curve (if length of output is 4).
"""
curve = [complex(*p) for p in curve]
for n in range(1, MAX_N + 1):
spline = cubic_approx_spline(curve, n, max_err, all_quadratic)
if spline is not None:
# done. go home
return [(s.real, s.imag) for s in spline]
raise ApproxNotFoundError(curve)
@cython.locals(l=cython.int, last_i=cython.int, i=cython.int)
@cython.locals(all_quadratic=cython.int)
def curves_to_quadratic(curves, max_errors, all_quadratic=True):
"""Return quadratic Bezier splines approximating the input cubic Beziers.
Args:
curves: A sequence of *n* curves, each curve being a sequence of four
2D tuples.
max_errors: A sequence of *n* floats representing the maximum permissible
deviation from each of the cubic Bezier curves.
all_quadratic (bool): If True (default) returned values are a
quadratic spline. If False, they are either a single quadratic
curve or a single cubic curve.
Example::
>>> curves_to_quadratic( [
... [ (50,50), (100,100), (150,100), (200,50) ],
... [ (75,50), (120,100), (150,75), (200,60) ]
... ], [1,1] )
[[(50.0, 50.0), (75.0, 75.0), (125.0, 91.66666666666666), (175.0, 75.0), (200.0, 50.0)], [(75.0, 50.0), (97.5, 75.0), (135.41666666666666, 82.08333333333333), (175.0, 67.5), (200.0, 60.0)]]
The returned splines have "implied oncurve points" suitable for use in
TrueType ``glif`` outlines - i.e. in the first spline returned above,
the first quadratic segment runs from (50,50) to
( (75 + 125)/2 , (120 + 91.666..)/2 ) = (100, 83.333...).
Returns:
If all_quadratic is True, a list of splines, each spline being a list
of 2D tuples.
If all_quadratic is False, a list of curves, each curve being a quadratic
(length 3), or cubic (length 4).
Raises:
fontTools.cu2qu.Errors.ApproxNotFoundError: if no suitable approximation
can be found for all curves with the given parameters.
"""
curves = [[complex(*p) for p in curve] for curve in curves]
assert len(max_errors) == len(curves)
l = len(curves)
splines = [None] * l
last_i = i = 0
n = 1
while True:
spline = cubic_approx_spline(curves[i], n, max_errors[i], all_quadratic)
if spline is None:
if n == MAX_N:
break
n += 1
last_i = i
continue
splines[i] = spline
i = (i + 1) % l
if i == last_i:
# done. go home
return [[(s.real, s.imag) for s in spline] for spline in splines]
raise ApproxNotFoundError(curves)

View File

@ -0,0 +1,77 @@
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class Error(Exception):
"""Base Cu2Qu exception class for all other errors."""
class ApproxNotFoundError(Error):
def __init__(self, curve):
message = "no approximation found: %s" % curve
super().__init__(message)
self.curve = curve
class UnequalZipLengthsError(Error):
pass
class IncompatibleGlyphsError(Error):
def __init__(self, glyphs):
assert len(glyphs) > 1
self.glyphs = glyphs
names = set(repr(g.name) for g in glyphs)
if len(names) > 1:
self.combined_name = "{%s}" % ", ".join(sorted(names))
else:
self.combined_name = names.pop()
def __repr__(self):
return "<%s %s>" % (type(self).__name__, self.combined_name)
class IncompatibleSegmentNumberError(IncompatibleGlyphsError):
def __str__(self):
return "Glyphs named %s have different number of segments" % (
self.combined_name
)
class IncompatibleSegmentTypesError(IncompatibleGlyphsError):
def __init__(self, glyphs, segments):
IncompatibleGlyphsError.__init__(self, glyphs)
self.segments = segments
def __str__(self):
lines = []
ndigits = len(str(max(self.segments)))
for i, tags in sorted(self.segments.items()):
lines.append(
"%s: (%s)" % (str(i).rjust(ndigits), ", ".join(repr(t) for t in tags))
)
return "Glyphs named %s have incompatible segment types:\n %s" % (
self.combined_name,
"\n ".join(lines),
)
class IncompatibleFontsError(Error):
def __init__(self, glyph_errors):
self.glyph_errors = glyph_errors
def __str__(self):
return "fonts contains incompatible glyphs: %s" % (
", ".join(repr(g) for g in sorted(self.glyph_errors.keys()))
)

View File

@ -0,0 +1,349 @@
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Converts cubic bezier curves to quadratic splines.
Conversion is performed such that the quadratic splines keep the same end-curve
tangents as the original cubics. The approach is iterative, increasing the
number of segments for a spline until the error gets below a bound.
Respective curves from multiple fonts will be converted at once to ensure that
the resulting splines are interpolation-compatible.
"""
import logging
from fontTools.pens.basePen import AbstractPen
from fontTools.pens.pointPen import PointToSegmentPen
from fontTools.pens.reverseContourPen import ReverseContourPen
from . import curves_to_quadratic
from .errors import (
UnequalZipLengthsError,
IncompatibleSegmentNumberError,
IncompatibleSegmentTypesError,
IncompatibleGlyphsError,
IncompatibleFontsError,
)
__all__ = ["fonts_to_quadratic", "font_to_quadratic"]
# The default approximation error below is a relative value (1/1000 of the EM square).
# Later on, we convert it to absolute font units by multiplying it by a font's UPEM
# (see fonts_to_quadratic).
DEFAULT_MAX_ERR = 0.001
CURVE_TYPE_LIB_KEY = "com.github.googlei18n.cu2qu.curve_type"
logger = logging.getLogger(__name__)
_zip = zip
def zip(*args):
"""Ensure each argument to zip has the same length. Also make sure a list is
returned for python 2/3 compatibility.
"""
if len(set(len(a) for a in args)) != 1:
raise UnequalZipLengthsError(*args)
return list(_zip(*args))
class GetSegmentsPen(AbstractPen):
"""Pen to collect segments into lists of points for conversion.
Curves always include their initial on-curve point, so some points are
duplicated between segments.
"""
def __init__(self):
self._last_pt = None
self.segments = []
def _add_segment(self, tag, *args):
if tag in ["move", "line", "qcurve", "curve"]:
self._last_pt = args[-1]
self.segments.append((tag, args))
def moveTo(self, pt):
self._add_segment("move", pt)
def lineTo(self, pt):
self._add_segment("line", pt)
def qCurveTo(self, *points):
self._add_segment("qcurve", self._last_pt, *points)
def curveTo(self, *points):
self._add_segment("curve", self._last_pt, *points)
def closePath(self):
self._add_segment("close")
def endPath(self):
self._add_segment("end")
def addComponent(self, glyphName, transformation):
pass
def _get_segments(glyph):
"""Get a glyph's segments as extracted by GetSegmentsPen."""
pen = GetSegmentsPen()
# glyph.draw(pen)
# We can't simply draw the glyph with the pen, but we must initialize the
# PointToSegmentPen explicitly with outputImpliedClosingLine=True.
# By default PointToSegmentPen does not outputImpliedClosingLine -- unless
# last and first point on closed contour are duplicated. Because we are
# converting multiple glyphs at the same time, we want to make sure
# this function returns the same number of segments, whether or not
# the last and first point overlap.
# https://github.com/googlefonts/fontmake/issues/572
# https://github.com/fonttools/fonttools/pull/1720
pointPen = PointToSegmentPen(pen, outputImpliedClosingLine=True)
glyph.drawPoints(pointPen)
return pen.segments
def _set_segments(glyph, segments, reverse_direction):
"""Draw segments as extracted by GetSegmentsPen back to a glyph."""
glyph.clearContours()
pen = glyph.getPen()
if reverse_direction:
pen = ReverseContourPen(pen)
for tag, args in segments:
if tag == "move":
pen.moveTo(*args)
elif tag == "line":
pen.lineTo(*args)
elif tag == "curve":
pen.curveTo(*args[1:])
elif tag == "qcurve":
pen.qCurveTo(*args[1:])
elif tag == "close":
pen.closePath()
elif tag == "end":
pen.endPath()
else:
raise AssertionError('Unhandled segment type "%s"' % tag)
def _segments_to_quadratic(segments, max_err, stats, all_quadratic=True):
"""Return quadratic approximations of cubic segments."""
assert all(s[0] == "curve" for s in segments), "Non-cubic given to convert"
new_points = curves_to_quadratic([s[1] for s in segments], max_err, all_quadratic)
n = len(new_points[0])
assert all(len(s) == n for s in new_points[1:]), "Converted incompatibly"
spline_length = str(n - 2)
stats[spline_length] = stats.get(spline_length, 0) + 1
if all_quadratic or n == 3:
return [("qcurve", p) for p in new_points]
else:
return [("curve", p) for p in new_points]
def _glyphs_to_quadratic(glyphs, max_err, reverse_direction, stats, all_quadratic=True):
"""Do the actual conversion of a set of compatible glyphs, after arguments
have been set up.
Return True if the glyphs were modified, else return False.
"""
try:
segments_by_location = zip(*[_get_segments(g) for g in glyphs])
except UnequalZipLengthsError:
raise IncompatibleSegmentNumberError(glyphs)
if not any(segments_by_location):
return False
# always modify input glyphs if reverse_direction is True
glyphs_modified = reverse_direction
new_segments_by_location = []
incompatible = {}
for i, segments in enumerate(segments_by_location):
tag = segments[0][0]
if not all(s[0] == tag for s in segments[1:]):
incompatible[i] = [s[0] for s in segments]
elif tag == "curve":
new_segments = _segments_to_quadratic(
segments, max_err, stats, all_quadratic
)
if all_quadratic or new_segments != segments:
glyphs_modified = True
segments = new_segments
new_segments_by_location.append(segments)
if glyphs_modified:
new_segments_by_glyph = zip(*new_segments_by_location)
for glyph, new_segments in zip(glyphs, new_segments_by_glyph):
_set_segments(glyph, new_segments, reverse_direction)
if incompatible:
raise IncompatibleSegmentTypesError(glyphs, segments=incompatible)
return glyphs_modified
def glyphs_to_quadratic(
glyphs, max_err=None, reverse_direction=False, stats=None, all_quadratic=True
):
"""Convert the curves of a set of compatible of glyphs to quadratic.
All curves will be converted to quadratic at once, ensuring interpolation
compatibility. If this is not required, calling glyphs_to_quadratic with one
glyph at a time may yield slightly more optimized results.
Return True if glyphs were modified, else return False.
Raises IncompatibleGlyphsError if glyphs have non-interpolatable outlines.
"""
if stats is None:
stats = {}
if not max_err:
# assume 1000 is the default UPEM
max_err = DEFAULT_MAX_ERR * 1000
if isinstance(max_err, (list, tuple)):
max_errors = max_err
else:
max_errors = [max_err] * len(glyphs)
assert len(max_errors) == len(glyphs)
return _glyphs_to_quadratic(
glyphs, max_errors, reverse_direction, stats, all_quadratic
)
def fonts_to_quadratic(
fonts,
max_err_em=None,
max_err=None,
reverse_direction=False,
stats=None,
dump_stats=False,
remember_curve_type=True,
all_quadratic=True,
):
"""Convert the curves of a collection of fonts to quadratic.
All curves will be converted to quadratic at once, ensuring interpolation
compatibility. If this is not required, calling fonts_to_quadratic with one
font at a time may yield slightly more optimized results.
Return the set of modified glyph names if any, else return an empty set.
By default, cu2qu stores the curve type in the fonts' lib, under a private
key "com.github.googlei18n.cu2qu.curve_type", and will not try to convert
them again if the curve type is already set to "quadratic".
Setting 'remember_curve_type' to False disables this optimization.
Raises IncompatibleFontsError if same-named glyphs from different fonts
have non-interpolatable outlines.
"""
if remember_curve_type:
curve_types = {f.lib.get(CURVE_TYPE_LIB_KEY, "cubic") for f in fonts}
if len(curve_types) == 1:
curve_type = next(iter(curve_types))
if curve_type in ("quadratic", "mixed"):
logger.info("Curves already converted to quadratic")
return False
elif curve_type == "cubic":
pass # keep converting
else:
raise NotImplementedError(curve_type)
elif len(curve_types) > 1:
# going to crash later if they do differ
logger.warning("fonts may contain different curve types")
if stats is None:
stats = {}
if max_err_em and max_err:
raise TypeError("Only one of max_err and max_err_em can be specified.")
if not (max_err_em or max_err):
max_err_em = DEFAULT_MAX_ERR
if isinstance(max_err, (list, tuple)):
assert len(max_err) == len(fonts)
max_errors = max_err
elif max_err:
max_errors = [max_err] * len(fonts)
if isinstance(max_err_em, (list, tuple)):
assert len(fonts) == len(max_err_em)
max_errors = [f.info.unitsPerEm * e for f, e in zip(fonts, max_err_em)]
elif max_err_em:
max_errors = [f.info.unitsPerEm * max_err_em for f in fonts]
modified = set()
glyph_errors = {}
for name in set().union(*(f.keys() for f in fonts)):
glyphs = []
cur_max_errors = []
for font, error in zip(fonts, max_errors):
if name in font:
glyphs.append(font[name])
cur_max_errors.append(error)
try:
if _glyphs_to_quadratic(
glyphs, cur_max_errors, reverse_direction, stats, all_quadratic
):
modified.add(name)
except IncompatibleGlyphsError as exc:
logger.error(exc)
glyph_errors[name] = exc
if glyph_errors:
raise IncompatibleFontsError(glyph_errors)
if modified and dump_stats:
spline_lengths = sorted(stats.keys())
logger.info(
"New spline lengths: %s"
% (", ".join("%s: %d" % (l, stats[l]) for l in spline_lengths))
)
if remember_curve_type:
for font in fonts:
curve_type = font.lib.get(CURVE_TYPE_LIB_KEY, "cubic")
new_curve_type = "quadratic" if all_quadratic else "mixed"
if curve_type != new_curve_type:
font.lib[CURVE_TYPE_LIB_KEY] = new_curve_type
return modified
def glyph_to_quadratic(glyph, **kwargs):
"""Convenience wrapper around glyphs_to_quadratic, for just one glyph.
Return True if the glyph was modified, else return False.
"""
return glyphs_to_quadratic([glyph], **kwargs)
def font_to_quadratic(font, **kwargs):
"""Convenience wrapper around fonts_to_quadratic, for just one font.
Return the set of modified glyph names if any, else return empty set.
"""
return fonts_to_quadratic([font], **kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,6 @@
import sys
from fontTools.designspaceLib import main
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,475 @@
"""Allows building all the variable fonts of a DesignSpace version 5 by
splitting the document into interpolable sub-space, then into each VF.
"""
from __future__ import annotations
import itertools
import logging
import math
from typing import Any, Callable, Dict, Iterator, List, Tuple, cast
from fontTools.designspaceLib import (
AxisDescriptor,
AxisMappingDescriptor,
DesignSpaceDocument,
DiscreteAxisDescriptor,
InstanceDescriptor,
RuleDescriptor,
SimpleLocationDict,
SourceDescriptor,
VariableFontDescriptor,
)
from fontTools.designspaceLib.statNames import StatNames, getStatNames
from fontTools.designspaceLib.types import (
ConditionSet,
Range,
Region,
getVFUserRegion,
locationInRegion,
regionInRegion,
userRegionToDesignRegion,
)
LOGGER = logging.getLogger(__name__)
MakeInstanceFilenameCallable = Callable[
[DesignSpaceDocument, InstanceDescriptor, StatNames], str
]
def defaultMakeInstanceFilename(
doc: DesignSpaceDocument, instance: InstanceDescriptor, statNames: StatNames
) -> str:
"""Default callable to synthesize an instance filename
when makeNames=True, for instances that don't specify an instance name
in the designspace. This part of the name generation can be overriden
because it's not specified by the STAT table.
"""
familyName = instance.familyName or statNames.familyNames.get("en")
styleName = instance.styleName or statNames.styleNames.get("en")
return f"{familyName}-{styleName}.ttf"
def splitInterpolable(
doc: DesignSpaceDocument,
makeNames: bool = True,
expandLocations: bool = True,
makeInstanceFilename: MakeInstanceFilenameCallable = defaultMakeInstanceFilename,
) -> Iterator[Tuple[SimpleLocationDict, DesignSpaceDocument]]:
"""Split the given DS5 into several interpolable sub-designspaces.
There are as many interpolable sub-spaces as there are combinations of
discrete axis values.
E.g. with axes:
- italic (discrete) Upright or Italic
- style (discrete) Sans or Serif
- weight (continuous) 100 to 900
There are 4 sub-spaces in which the Weight axis should interpolate:
(Upright, Sans), (Upright, Serif), (Italic, Sans) and (Italic, Serif).
The sub-designspaces still include the full axis definitions and STAT data,
but the rules, sources, variable fonts, instances are trimmed down to only
keep what falls within the interpolable sub-space.
Args:
- ``makeNames``: Whether to compute the instance family and style
names using the STAT data.
- ``expandLocations``: Whether to turn all locations into "full"
locations, including implicit default axis values where missing.
- ``makeInstanceFilename``: Callable to synthesize an instance filename
when makeNames=True, for instances that don't specify an instance name
in the designspace. This part of the name generation can be overridden
because it's not specified by the STAT table.
.. versionadded:: 5.0
"""
discreteAxes = []
interpolableUserRegion: Region = {}
for axis in doc.axes:
if hasattr(axis, "values"):
# Mypy doesn't support narrowing union types via hasattr()
# TODO(Python 3.10): use TypeGuard
# https://mypy.readthedocs.io/en/stable/type_narrowing.html
axis = cast(DiscreteAxisDescriptor, axis)
discreteAxes.append(axis)
else:
axis = cast(AxisDescriptor, axis)
interpolableUserRegion[axis.name] = Range(
axis.minimum,
axis.maximum,
axis.default,
)
valueCombinations = itertools.product(*[axis.values for axis in discreteAxes])
for values in valueCombinations:
discreteUserLocation = {
discreteAxis.name: value
for discreteAxis, value in zip(discreteAxes, values)
}
subDoc = _extractSubSpace(
doc,
{**interpolableUserRegion, **discreteUserLocation},
keepVFs=True,
makeNames=makeNames,
expandLocations=expandLocations,
makeInstanceFilename=makeInstanceFilename,
)
yield discreteUserLocation, subDoc
def splitVariableFonts(
doc: DesignSpaceDocument,
makeNames: bool = False,
expandLocations: bool = False,
makeInstanceFilename: MakeInstanceFilenameCallable = defaultMakeInstanceFilename,
) -> Iterator[Tuple[str, DesignSpaceDocument]]:
"""Convert each variable font listed in this document into a standalone
designspace. This can be used to compile all the variable fonts from a
format 5 designspace using tools that can only deal with 1 VF at a time.
Args:
- ``makeNames``: Whether to compute the instance family and style
names using the STAT data.
- ``expandLocations``: Whether to turn all locations into "full"
locations, including implicit default axis values where missing.
- ``makeInstanceFilename``: Callable to synthesize an instance filename
when makeNames=True, for instances that don't specify an instance name
in the designspace. This part of the name generation can be overridden
because it's not specified by the STAT table.
.. versionadded:: 5.0
"""
# Make one DesignspaceDoc v5 for each variable font
for vf in doc.getVariableFonts():
vfUserRegion = getVFUserRegion(doc, vf)
vfDoc = _extractSubSpace(
doc,
vfUserRegion,
keepVFs=False,
makeNames=makeNames,
expandLocations=expandLocations,
makeInstanceFilename=makeInstanceFilename,
)
vfDoc.lib = {**vfDoc.lib, **vf.lib}
yield vf.name, vfDoc
def convert5to4(
doc: DesignSpaceDocument,
) -> Dict[str, DesignSpaceDocument]:
"""Convert each variable font listed in this document into a standalone
format 4 designspace. This can be used to compile all the variable fonts
from a format 5 designspace using tools that only know about format 4.
.. versionadded:: 5.0
"""
vfs = {}
for _location, subDoc in splitInterpolable(doc):
for vfName, vfDoc in splitVariableFonts(subDoc):
vfDoc.formatVersion = "4.1"
vfs[vfName] = vfDoc
return vfs
def _extractSubSpace(
doc: DesignSpaceDocument,
userRegion: Region,
*,
keepVFs: bool,
makeNames: bool,
expandLocations: bool,
makeInstanceFilename: MakeInstanceFilenameCallable,
) -> DesignSpaceDocument:
subDoc = DesignSpaceDocument()
# Don't include STAT info
# FIXME: (Jany) let's think about it. Not include = OK because the point of
# the splitting is to build VFs and we'll use the STAT data of the full
# document to generate the STAT of the VFs, so "no need" to have STAT data
# in sub-docs. Counterpoint: what if someone wants to split this DS for
# other purposes? Maybe for that it would be useful to also subset the STAT
# data?
# subDoc.elidedFallbackName = doc.elidedFallbackName
def maybeExpandDesignLocation(object):
if expandLocations:
return object.getFullDesignLocation(doc)
else:
return object.designLocation
for axis in doc.axes:
range = userRegion[axis.name]
if isinstance(range, Range) and hasattr(axis, "minimum"):
# Mypy doesn't support narrowing union types via hasattr()
# TODO(Python 3.10): use TypeGuard
# https://mypy.readthedocs.io/en/stable/type_narrowing.html
axis = cast(AxisDescriptor, axis)
subDoc.addAxis(
AxisDescriptor(
# Same info
tag=axis.tag,
name=axis.name,
labelNames=axis.labelNames,
hidden=axis.hidden,
# Subset range
minimum=max(range.minimum, axis.minimum),
default=range.default or axis.default,
maximum=min(range.maximum, axis.maximum),
map=[
(user, design)
for user, design in axis.map
if range.minimum <= user <= range.maximum
],
# Don't include STAT info
axisOrdering=None,
axisLabels=None,
)
)
subDoc.axisMappings = mappings = []
subDocAxes = {axis.name for axis in subDoc.axes}
for mapping in doc.axisMappings:
if not all(axis in subDocAxes for axis in mapping.inputLocation.keys()):
continue
if not all(axis in subDocAxes for axis in mapping.outputLocation.keys()):
LOGGER.error(
"In axis mapping from input %s, some output axes are not in the variable-font: %s",
mapping.inputLocation,
mapping.outputLocation,
)
continue
mappingAxes = set()
mappingAxes.update(mapping.inputLocation.keys())
mappingAxes.update(mapping.outputLocation.keys())
for axis in doc.axes:
if axis.name not in mappingAxes:
continue
range = userRegion[axis.name]
if (
range.minimum != axis.minimum
or (range.default is not None and range.default != axis.default)
or range.maximum != axis.maximum
):
LOGGER.error(
"Limiting axis ranges used in <mapping> elements not supported: %s",
axis.name,
)
continue
mappings.append(
AxisMappingDescriptor(
inputLocation=mapping.inputLocation,
outputLocation=mapping.outputLocation,
)
)
# Don't include STAT info
# subDoc.locationLabels = doc.locationLabels
# Rules: subset them based on conditions
designRegion = userRegionToDesignRegion(doc, userRegion)
subDoc.rules = _subsetRulesBasedOnConditions(doc.rules, designRegion)
subDoc.rulesProcessingLast = doc.rulesProcessingLast
# Sources: keep only the ones that fall within the kept axis ranges
for source in doc.sources:
if not locationInRegion(doc.map_backward(source.designLocation), userRegion):
continue
subDoc.addSource(
SourceDescriptor(
filename=source.filename,
path=source.path,
font=source.font,
name=source.name,
designLocation=_filterLocation(
userRegion, maybeExpandDesignLocation(source)
),
layerName=source.layerName,
familyName=source.familyName,
styleName=source.styleName,
muteKerning=source.muteKerning,
muteInfo=source.muteInfo,
mutedGlyphNames=source.mutedGlyphNames,
)
)
# Copy family name translations from the old default source to the new default
vfDefault = subDoc.findDefault()
oldDefault = doc.findDefault()
if vfDefault is not None and oldDefault is not None:
vfDefault.localisedFamilyName = oldDefault.localisedFamilyName
# Variable fonts: keep only the ones that fall within the kept axis ranges
if keepVFs:
# Note: call getVariableFont() to make the implicit VFs explicit
for vf in doc.getVariableFonts():
vfUserRegion = getVFUserRegion(doc, vf)
if regionInRegion(vfUserRegion, userRegion):
subDoc.addVariableFont(
VariableFontDescriptor(
name=vf.name,
filename=vf.filename,
axisSubsets=[
axisSubset
for axisSubset in vf.axisSubsets
if isinstance(userRegion[axisSubset.name], Range)
],
lib=vf.lib,
)
)
# Instances: same as Sources + compute missing names
for instance in doc.instances:
if not locationInRegion(instance.getFullUserLocation(doc), userRegion):
continue
if makeNames:
statNames = getStatNames(doc, instance.getFullUserLocation(doc))
familyName = instance.familyName or statNames.familyNames.get("en")
styleName = instance.styleName or statNames.styleNames.get("en")
subDoc.addInstance(
InstanceDescriptor(
filename=instance.filename
or makeInstanceFilename(doc, instance, statNames),
path=instance.path,
font=instance.font,
name=instance.name or f"{familyName} {styleName}",
userLocation={} if expandLocations else instance.userLocation,
designLocation=_filterLocation(
userRegion, maybeExpandDesignLocation(instance)
),
familyName=familyName,
styleName=styleName,
postScriptFontName=instance.postScriptFontName
or statNames.postScriptFontName,
styleMapFamilyName=instance.styleMapFamilyName
or statNames.styleMapFamilyNames.get("en"),
styleMapStyleName=instance.styleMapStyleName
or statNames.styleMapStyleName,
localisedFamilyName=instance.localisedFamilyName
or statNames.familyNames,
localisedStyleName=instance.localisedStyleName
or statNames.styleNames,
localisedStyleMapFamilyName=instance.localisedStyleMapFamilyName
or statNames.styleMapFamilyNames,
localisedStyleMapStyleName=instance.localisedStyleMapStyleName
or {},
lib=instance.lib,
)
)
else:
subDoc.addInstance(
InstanceDescriptor(
filename=instance.filename,
path=instance.path,
font=instance.font,
name=instance.name,
userLocation={} if expandLocations else instance.userLocation,
designLocation=_filterLocation(
userRegion, maybeExpandDesignLocation(instance)
),
familyName=instance.familyName,
styleName=instance.styleName,
postScriptFontName=instance.postScriptFontName,
styleMapFamilyName=instance.styleMapFamilyName,
styleMapStyleName=instance.styleMapStyleName,
localisedFamilyName=instance.localisedFamilyName,
localisedStyleName=instance.localisedStyleName,
localisedStyleMapFamilyName=instance.localisedStyleMapFamilyName,
localisedStyleMapStyleName=instance.localisedStyleMapStyleName,
lib=instance.lib,
)
)
subDoc.lib = doc.lib
return subDoc
def _conditionSetFrom(conditionSet: List[Dict[str, Any]]) -> ConditionSet:
c: Dict[str, Range] = {}
for condition in conditionSet:
minimum, maximum = condition.get("minimum"), condition.get("maximum")
c[condition["name"]] = Range(
minimum if minimum is not None else -math.inf,
maximum if maximum is not None else math.inf,
)
return c
def _subsetRulesBasedOnConditions(
rules: List[RuleDescriptor], designRegion: Region
) -> List[RuleDescriptor]:
# What rules to keep:
# - Keep the rule if any conditionset is relevant.
# - A conditionset is relevant if all conditions are relevant or it is empty.
# - A condition is relevant if
# - axis is point (C-AP),
# - and point in condition's range (C-AP-in)
# (in this case remove the condition because it's always true)
# - else (C-AP-out) whole conditionset can be discarded (condition false
# => conditionset false)
# - axis is range (C-AR),
# - (C-AR-all) and axis range fully contained in condition range: we can
# scrap the condition because it's always true
# - (C-AR-inter) and intersection(axis range, condition range) not empty:
# keep the condition with the smaller range (= intersection)
# - (C-AR-none) else, whole conditionset can be discarded
newRules: List[RuleDescriptor] = []
for rule in rules:
newRule: RuleDescriptor = RuleDescriptor(
name=rule.name, conditionSets=[], subs=rule.subs
)
for conditionset in rule.conditionSets:
cs = _conditionSetFrom(conditionset)
newConditionset: List[Dict[str, Any]] = []
discardConditionset = False
for selectionName, selectionValue in designRegion.items():
# TODO: Ensure that all(key in conditionset for key in region.keys())?
if selectionName not in cs:
# raise Exception("Selection has different axes than the rules")
continue
if isinstance(selectionValue, (float, int)): # is point
# Case C-AP-in
if selectionValue in cs[selectionName]:
pass # always matches, conditionset can stay empty for this one.
# Case C-AP-out
else:
discardConditionset = True
else: # is range
# Case C-AR-all
if selectionValue in cs[selectionName]:
pass # always matches, conditionset can stay empty for this one.
else:
intersection = cs[selectionName].intersection(selectionValue)
# Case C-AR-inter
if intersection is not None:
newConditionset.append(
{
"name": selectionName,
"minimum": intersection.minimum,
"maximum": intersection.maximum,
}
)
# Case C-AR-none
else:
discardConditionset = True
if not discardConditionset:
newRule.conditionSets.append(newConditionset)
if newRule.conditionSets:
newRules.append(newRule)
return newRules
def _filterLocation(
userRegion: Region,
location: Dict[str, float],
) -> Dict[str, float]:
return {
name: value
for name, value in location.items()
if name in userRegion and isinstance(userRegion[name], Range)
}

View File

@ -0,0 +1,253 @@
"""Compute name information for a given location in user-space coordinates
using STAT data. This can be used to fill-in automatically the names of an
instance:
.. code:: python
instance = doc.instances[0]
names = getStatNames(doc, instance.getFullUserLocation(doc))
print(names.styleNames)
"""
from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import logging
from fontTools.designspaceLib import (
AxisDescriptor,
AxisLabelDescriptor,
DesignSpaceDocument,
DesignSpaceDocumentError,
DiscreteAxisDescriptor,
SimpleLocationDict,
SourceDescriptor,
)
LOGGER = logging.getLogger(__name__)
# TODO(Python 3.8): use Literal
# RibbiStyleName = Union[Literal["regular"], Literal["bold"], Literal["italic"], Literal["bold italic"]]
RibbiStyle = str
BOLD_ITALIC_TO_RIBBI_STYLE = {
(False, False): "regular",
(False, True): "italic",
(True, False): "bold",
(True, True): "bold italic",
}
@dataclass
class StatNames:
"""Name data generated from the STAT table information."""
familyNames: Dict[str, str]
styleNames: Dict[str, str]
postScriptFontName: Optional[str]
styleMapFamilyNames: Dict[str, str]
styleMapStyleName: Optional[RibbiStyle]
def getStatNames(
doc: DesignSpaceDocument, userLocation: SimpleLocationDict
) -> StatNames:
"""Compute the family, style, PostScript names of the given ``userLocation``
using the document's STAT information.
Also computes localizations.
If not enough STAT data is available for a given name, either its dict of
localized names will be empty (family and style names), or the name will be
None (PostScript name).
.. versionadded:: 5.0
"""
familyNames: Dict[str, str] = {}
defaultSource: Optional[SourceDescriptor] = doc.findDefault()
if defaultSource is None:
LOGGER.warning("Cannot determine default source to look up family name.")
elif defaultSource.familyName is None:
LOGGER.warning(
"Cannot look up family name, assign the 'familyname' attribute to the default source."
)
else:
familyNames = {
"en": defaultSource.familyName,
**defaultSource.localisedFamilyName,
}
styleNames: Dict[str, str] = {}
# If a free-standing label matches the location, use it for name generation.
label = doc.labelForUserLocation(userLocation)
if label is not None:
styleNames = {"en": label.name, **label.labelNames}
# Otherwise, scour the axis labels for matches.
else:
# Gather all languages in which at least one translation is provided
# Then build names for all these languages, but fallback to English
# whenever a translation is missing.
labels = _getAxisLabelsForUserLocation(doc.axes, userLocation)
if labels:
languages = set(
language for label in labels for language in label.labelNames
)
languages.add("en")
for language in languages:
styleName = " ".join(
label.labelNames.get(language, label.defaultName)
for label in labels
if not label.elidable
)
if not styleName and doc.elidedFallbackName is not None:
styleName = doc.elidedFallbackName
styleNames[language] = styleName
if "en" not in familyNames or "en" not in styleNames:
# Not enough information to compute PS names of styleMap names
return StatNames(
familyNames=familyNames,
styleNames=styleNames,
postScriptFontName=None,
styleMapFamilyNames={},
styleMapStyleName=None,
)
postScriptFontName = f"{familyNames['en']}-{styleNames['en']}".replace(" ", "")
styleMapStyleName, regularUserLocation = _getRibbiStyle(doc, userLocation)
styleNamesForStyleMap = styleNames
if regularUserLocation != userLocation:
regularStatNames = getStatNames(doc, regularUserLocation)
styleNamesForStyleMap = regularStatNames.styleNames
styleMapFamilyNames = {}
for language in set(familyNames).union(styleNames.keys()):
familyName = familyNames.get(language, familyNames["en"])
styleName = styleNamesForStyleMap.get(language, styleNamesForStyleMap["en"])
styleMapFamilyNames[language] = (familyName + " " + styleName).strip()
return StatNames(
familyNames=familyNames,
styleNames=styleNames,
postScriptFontName=postScriptFontName,
styleMapFamilyNames=styleMapFamilyNames,
styleMapStyleName=styleMapStyleName,
)
def _getSortedAxisLabels(
axes: list[Union[AxisDescriptor, DiscreteAxisDescriptor]],
) -> Dict[str, list[AxisLabelDescriptor]]:
"""Returns axis labels sorted by their ordering, with unordered ones appended as
they are listed."""
# First, get the axis labels with explicit ordering...
sortedAxes = sorted(
(axis for axis in axes if axis.axisOrdering is not None),
key=lambda a: a.axisOrdering,
)
sortedLabels: Dict[str, list[AxisLabelDescriptor]] = {
axis.name: axis.axisLabels for axis in sortedAxes
}
# ... then append the others in the order they appear.
# NOTE: This relies on Python 3.7+ dict's preserved insertion order.
for axis in axes:
if axis.axisOrdering is None:
sortedLabels[axis.name] = axis.axisLabels
return sortedLabels
def _getAxisLabelsForUserLocation(
axes: list[Union[AxisDescriptor, DiscreteAxisDescriptor]],
userLocation: SimpleLocationDict,
) -> list[AxisLabelDescriptor]:
labels: list[AxisLabelDescriptor] = []
allAxisLabels = _getSortedAxisLabels(axes)
if allAxisLabels.keys() != userLocation.keys():
LOGGER.warning(
f"Mismatch between user location '{userLocation.keys()}' and available "
f"labels for '{allAxisLabels.keys()}'."
)
for axisName, axisLabels in allAxisLabels.items():
userValue = userLocation[axisName]
label: Optional[AxisLabelDescriptor] = next(
(
l
for l in axisLabels
if l.userValue == userValue
or (
l.userMinimum is not None
and l.userMaximum is not None
and l.userMinimum <= userValue <= l.userMaximum
)
),
None,
)
if label is None:
LOGGER.debug(
f"Document needs a label for axis '{axisName}', user value '{userValue}'."
)
else:
labels.append(label)
return labels
def _getRibbiStyle(
self: DesignSpaceDocument, userLocation: SimpleLocationDict
) -> Tuple[RibbiStyle, SimpleLocationDict]:
"""Compute the RIBBI style name of the given user location,
return the location of the matching Regular in the RIBBI group.
.. versionadded:: 5.0
"""
regularUserLocation = {}
axes_by_tag = {axis.tag: axis for axis in self.axes}
bold: bool = False
italic: bool = False
axis = axes_by_tag.get("wght")
if axis is not None:
for regular_label in axis.axisLabels:
if (
regular_label.linkedUserValue == userLocation[axis.name]
# In the "recursive" case where both the Regular has
# linkedUserValue pointing the Bold, and the Bold has
# linkedUserValue pointing to the Regular, only consider the
# first case: Regular (e.g. 400) has linkedUserValue pointing to
# Bold (e.g. 700, higher than Regular)
and regular_label.userValue < regular_label.linkedUserValue
):
regularUserLocation[axis.name] = regular_label.userValue
bold = True
break
axis = axes_by_tag.get("ital") or axes_by_tag.get("slnt")
if axis is not None:
for upright_label in axis.axisLabels:
if (
upright_label.linkedUserValue == userLocation[axis.name]
# In the "recursive" case where both the Upright has
# linkedUserValue pointing the Italic, and the Italic has
# linkedUserValue pointing to the Upright, only consider the
# first case: Upright (e.g. ital=0, slant=0) has
# linkedUserValue pointing to Italic (e.g ital=1, slant=-12 or
# slant=12 for backwards italics, in any case higher than
# Upright in absolute value, hence the abs() below.
and abs(upright_label.userValue) < abs(upright_label.linkedUserValue)
):
regularUserLocation[axis.name] = upright_label.userValue
italic = True
break
return BOLD_ITALIC_TO_RIBBI_STYLE[bold, italic], {
**userLocation,
**regularUserLocation,
}

View File

@ -0,0 +1,147 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, List, Optional, Union, cast
from fontTools.designspaceLib import (
AxisDescriptor,
DesignSpaceDocument,
DesignSpaceDocumentError,
RangeAxisSubsetDescriptor,
SimpleLocationDict,
ValueAxisSubsetDescriptor,
VariableFontDescriptor,
)
def clamp(value, minimum, maximum):
return min(max(value, minimum), maximum)
@dataclass
class Range:
minimum: float
"""Inclusive minimum of the range."""
maximum: float
"""Inclusive maximum of the range."""
default: float = 0
"""Default value"""
def __post_init__(self):
self.minimum, self.maximum = sorted((self.minimum, self.maximum))
self.default = clamp(self.default, self.minimum, self.maximum)
def __contains__(self, value: Union[float, Range]) -> bool:
if isinstance(value, Range):
return self.minimum <= value.minimum and value.maximum <= self.maximum
return self.minimum <= value <= self.maximum
def intersection(self, other: Range) -> Optional[Range]:
if self.maximum < other.minimum or self.minimum > other.maximum:
return None
else:
return Range(
max(self.minimum, other.minimum),
min(self.maximum, other.maximum),
self.default, # We don't care about the default in this use-case
)
# A region selection is either a range or a single value, as a Designspace v5
# axis-subset element only allows a single discrete value or a range for a
# variable-font element.
Region = Dict[str, Union[Range, float]]
# A conditionset is a set of named ranges.
ConditionSet = Dict[str, Range]
# A rule is a list of conditionsets where any has to be relevant for the whole rule to be relevant.
Rule = List[ConditionSet]
Rules = Dict[str, Rule]
def locationInRegion(location: SimpleLocationDict, region: Region) -> bool:
for name, value in location.items():
if name not in region:
return False
regionValue = region[name]
if isinstance(regionValue, (float, int)):
if value != regionValue:
return False
else:
if value not in regionValue:
return False
return True
def regionInRegion(region: Region, superRegion: Region) -> bool:
for name, value in region.items():
if not name in superRegion:
return False
superValue = superRegion[name]
if isinstance(superValue, (float, int)):
if value != superValue:
return False
else:
if value not in superValue:
return False
return True
def userRegionToDesignRegion(doc: DesignSpaceDocument, userRegion: Region) -> Region:
designRegion = {}
for name, value in userRegion.items():
axis = doc.getAxis(name)
if axis is None:
raise DesignSpaceDocumentError(
f"Cannot find axis named '{name}' for region."
)
if isinstance(value, (float, int)):
designRegion[name] = axis.map_forward(value)
else:
designRegion[name] = Range(
axis.map_forward(value.minimum),
axis.map_forward(value.maximum),
axis.map_forward(value.default),
)
return designRegion
def getVFUserRegion(doc: DesignSpaceDocument, vf: VariableFontDescriptor) -> Region:
vfUserRegion: Region = {}
# For each axis, 2 cases:
# - it has a range = it's an axis in the VF DS
# - it's a single location = use it to know which rules should apply in the VF
for axisSubset in vf.axisSubsets:
axis = doc.getAxis(axisSubset.name)
if axis is None:
raise DesignSpaceDocumentError(
f"Cannot find axis named '{axisSubset.name}' for variable font '{vf.name}'."
)
if hasattr(axisSubset, "userMinimum"):
# Mypy doesn't support narrowing union types via hasattr()
# TODO(Python 3.10): use TypeGuard
# https://mypy.readthedocs.io/en/stable/type_narrowing.html
axisSubset = cast(RangeAxisSubsetDescriptor, axisSubset)
if not hasattr(axis, "minimum"):
raise DesignSpaceDocumentError(
f"Cannot select a range over '{axis.name}' for variable font '{vf.name}' "
"because it's a discrete axis, use only 'userValue' instead."
)
axis = cast(AxisDescriptor, axis)
vfUserRegion[axis.name] = Range(
max(axisSubset.userMinimum, axis.minimum),
min(axisSubset.userMaximum, axis.maximum),
axisSubset.userDefault or axis.default,
)
else:
axisSubset = cast(ValueAxisSubsetDescriptor, axisSubset)
vfUserRegion[axis.name] = axisSubset.userValue
# Any axis not mentioned explicitly has a single location = default value
for axis in doc.axes:
if axis.name not in vfUserRegion:
assert isinstance(
axis.default, (int, float)
), f"Axis '{axis.name}' has no valid default value."
vfUserRegion[axis.name] = axis.default
return vfUserRegion

View File

@ -0,0 +1,258 @@
MacRoman = [
"NUL",
"Eth",
"eth",
"Lslash",
"lslash",
"Scaron",
"scaron",
"Yacute",
"yacute",
"HT",
"LF",
"Thorn",
"thorn",
"CR",
"Zcaron",
"zcaron",
"DLE",
"DC1",
"DC2",
"DC3",
"DC4",
"onehalf",
"onequarter",
"onesuperior",
"threequarters",
"threesuperior",
"twosuperior",
"brokenbar",
"minus",
"multiply",
"RS",
"US",
"space",
"exclam",
"quotedbl",
"numbersign",
"dollar",
"percent",
"ampersand",
"quotesingle",
"parenleft",
"parenright",
"asterisk",
"plus",
"comma",
"hyphen",
"period",
"slash",
"zero",
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
"colon",
"semicolon",
"less",
"equal",
"greater",
"question",
"at",
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
"I",
"J",
"K",
"L",
"M",
"N",
"O",
"P",
"Q",
"R",
"S",
"T",
"U",
"V",
"W",
"X",
"Y",
"Z",
"bracketleft",
"backslash",
"bracketright",
"asciicircum",
"underscore",
"grave",
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
"braceleft",
"bar",
"braceright",
"asciitilde",
"DEL",
"Adieresis",
"Aring",
"Ccedilla",
"Eacute",
"Ntilde",
"Odieresis",
"Udieresis",
"aacute",
"agrave",
"acircumflex",
"adieresis",
"atilde",
"aring",
"ccedilla",
"eacute",
"egrave",
"ecircumflex",
"edieresis",
"iacute",
"igrave",
"icircumflex",
"idieresis",
"ntilde",
"oacute",
"ograve",
"ocircumflex",
"odieresis",
"otilde",
"uacute",
"ugrave",
"ucircumflex",
"udieresis",
"dagger",
"degree",
"cent",
"sterling",
"section",
"bullet",
"paragraph",
"germandbls",
"registered",
"copyright",
"trademark",
"acute",
"dieresis",
"notequal",
"AE",
"Oslash",
"infinity",
"plusminus",
"lessequal",
"greaterequal",
"yen",
"mu",
"partialdiff",
"summation",
"product",
"pi",
"integral",
"ordfeminine",
"ordmasculine",
"Omega",
"ae",
"oslash",
"questiondown",
"exclamdown",
"logicalnot",
"radical",
"florin",
"approxequal",
"Delta",
"guillemotleft",
"guillemotright",
"ellipsis",
"nbspace",
"Agrave",
"Atilde",
"Otilde",
"OE",
"oe",
"endash",
"emdash",
"quotedblleft",
"quotedblright",
"quoteleft",
"quoteright",
"divide",
"lozenge",
"ydieresis",
"Ydieresis",
"fraction",
"currency",
"guilsinglleft",
"guilsinglright",
"fi",
"fl",
"daggerdbl",
"periodcentered",
"quotesinglbase",
"quotedblbase",
"perthousand",
"Acircumflex",
"Ecircumflex",
"Aacute",
"Edieresis",
"Egrave",
"Iacute",
"Icircumflex",
"Idieresis",
"Igrave",
"Oacute",
"Ocircumflex",
"apple",
"Ograve",
"Uacute",
"Ucircumflex",
"Ugrave",
"dotlessi",
"circumflex",
"tilde",
"macron",
"breve",
"dotaccent",
"ring",
"cedilla",
"hungarumlaut",
"ogonek",
"caron",
]

View File

@ -0,0 +1,258 @@
StandardEncoding = [
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
"space",
"exclam",
"quotedbl",
"numbersign",
"dollar",
"percent",
"ampersand",
"quoteright",
"parenleft",
"parenright",
"asterisk",
"plus",
"comma",
"hyphen",
"period",
"slash",
"zero",
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
"colon",
"semicolon",
"less",
"equal",
"greater",
"question",
"at",
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
"I",
"J",
"K",
"L",
"M",
"N",
"O",
"P",
"Q",
"R",
"S",
"T",
"U",
"V",
"W",
"X",
"Y",
"Z",
"bracketleft",
"backslash",
"bracketright",
"asciicircum",
"underscore",
"quoteleft",
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
"braceleft",
"bar",
"braceright",
"asciitilde",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
"exclamdown",
"cent",
"sterling",
"fraction",
"yen",
"florin",
"section",
"currency",
"quotesingle",
"quotedblleft",
"guillemotleft",
"guilsinglleft",
"guilsinglright",
"fi",
"fl",
".notdef",
"endash",
"dagger",
"daggerdbl",
"periodcentered",
".notdef",
"paragraph",
"bullet",
"quotesinglbase",
"quotedblbase",
"quotedblright",
"guillemotright",
"ellipsis",
"perthousand",
".notdef",
"questiondown",
".notdef",
"grave",
"acute",
"circumflex",
"tilde",
"macron",
"breve",
"dotaccent",
"dieresis",
".notdef",
"ring",
"cedilla",
".notdef",
"hungarumlaut",
"ogonek",
"caron",
"emdash",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
"AE",
".notdef",
"ordfeminine",
".notdef",
".notdef",
".notdef",
".notdef",
"Lslash",
"Oslash",
"OE",
"ordmasculine",
".notdef",
".notdef",
".notdef",
".notdef",
".notdef",
"ae",
".notdef",
".notdef",
".notdef",
"dotlessi",
".notdef",
".notdef",
"lslash",
"oslash",
"oe",
"germandbls",
".notdef",
".notdef",
".notdef",
".notdef",
]

View File

@ -0,0 +1 @@
"""Empty __init__.py file to signal Python this directory is a package."""

View File

@ -0,0 +1,135 @@
"""Extend the Python codecs module with a few encodings that are used in OpenType (name table)
but missing from Python. See https://github.com/fonttools/fonttools/issues/236 for details."""
import codecs
import encodings
class ExtendCodec(codecs.Codec):
def __init__(self, name, base_encoding, mapping):
self.name = name
self.base_encoding = base_encoding
self.mapping = mapping
self.reverse = {v: k for k, v in mapping.items()}
self.max_len = max(len(v) for v in mapping.values())
self.info = codecs.CodecInfo(
name=self.name, encode=self.encode, decode=self.decode
)
codecs.register_error(name, self.error)
def _map(self, mapper, output_type, exc_type, input, errors):
base_error_handler = codecs.lookup_error(errors)
length = len(input)
out = output_type()
while input:
# first try to use self.error as the error handler
try:
part = mapper(input, self.base_encoding, errors=self.name)
out += part
break # All converted
except exc_type as e:
# else convert the correct part, handle error as requested and continue
out += mapper(input[: e.start], self.base_encoding, self.name)
replacement, pos = base_error_handler(e)
out += replacement
input = input[pos:]
return out, length
def encode(self, input, errors="strict"):
return self._map(codecs.encode, bytes, UnicodeEncodeError, input, errors)
def decode(self, input, errors="strict"):
return self._map(codecs.decode, str, UnicodeDecodeError, input, errors)
def error(self, e):
if isinstance(e, UnicodeDecodeError):
for end in range(e.start + 1, e.end + 1):
s = e.object[e.start : end]
if s in self.mapping:
return self.mapping[s], end
elif isinstance(e, UnicodeEncodeError):
for end in range(e.start + 1, e.start + self.max_len + 1):
s = e.object[e.start : end]
if s in self.reverse:
return self.reverse[s], end
e.encoding = self.name
raise e
_extended_encodings = {
"x_mac_japanese_ttx": (
"shift_jis",
{
b"\xFC": chr(0x007C),
b"\x7E": chr(0x007E),
b"\x80": chr(0x005C),
b"\xA0": chr(0x00A0),
b"\xFD": chr(0x00A9),
b"\xFE": chr(0x2122),
b"\xFF": chr(0x2026),
},
),
"x_mac_trad_chinese_ttx": (
"big5",
{
b"\x80": chr(0x005C),
b"\xA0": chr(0x00A0),
b"\xFD": chr(0x00A9),
b"\xFE": chr(0x2122),
b"\xFF": chr(0x2026),
},
),
"x_mac_korean_ttx": (
"euc_kr",
{
b"\x80": chr(0x00A0),
b"\x81": chr(0x20A9),
b"\x82": chr(0x2014),
b"\x83": chr(0x00A9),
b"\xFE": chr(0x2122),
b"\xFF": chr(0x2026),
},
),
"x_mac_simp_chinese_ttx": (
"gb2312",
{
b"\x80": chr(0x00FC),
b"\xA0": chr(0x00A0),
b"\xFD": chr(0x00A9),
b"\xFE": chr(0x2122),
b"\xFF": chr(0x2026),
},
),
}
_cache = {}
def search_function(name):
name = encodings.normalize_encoding(name) # Rather undocumented...
if name in _extended_encodings:
if name not in _cache:
base_encoding, mapping = _extended_encodings[name]
assert name[-4:] == "_ttx"
# Python 2 didn't have any of the encodings that we are implementing
# in this file. Python 3 added aliases for the East Asian ones, mapping
# them "temporarily" to the same base encoding as us, with a comment
# suggesting that full implementation will appear some time later.
# As such, try the Python version of the x_mac_... first, if that is found,
# use *that* as our base encoding. This would make our encoding upgrade
# to the full encoding when and if Python finally implements that.
# http://bugs.python.org/issue24041
base_encodings = [name[:-4], base_encoding]
for base_encoding in base_encodings:
try:
codecs.lookup(base_encoding)
except LookupError:
continue
_cache[name] = ExtendCodec(name, base_encoding, mapping)
break
return _cache[name].info
return None
codecs.register(search_function)

View File

@ -0,0 +1,4 @@
"""fontTools.feaLib -- a package for dealing with OpenType feature files."""
# The structure of OpenType feature files is defined here:
# http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html

View File

@ -0,0 +1,78 @@
from fontTools.ttLib import TTFont
from fontTools.feaLib.builder import addOpenTypeFeatures, Builder
from fontTools.feaLib.error import FeatureLibError
from fontTools import configLogger
from fontTools.misc.cliTools import makeOutputFileName
import sys
import argparse
import logging
log = logging.getLogger("fontTools.feaLib")
def main(args=None):
"""Add features from a feature file (.fea) into an OTF font"""
parser = argparse.ArgumentParser(
description="Use fontTools to compile OpenType feature files (*.fea)."
)
parser.add_argument(
"input_fea", metavar="FEATURES", help="Path to the feature file"
)
parser.add_argument(
"input_font", metavar="INPUT_FONT", help="Path to the input font"
)
parser.add_argument(
"-o",
"--output",
dest="output_font",
metavar="OUTPUT_FONT",
help="Path to the output font.",
)
parser.add_argument(
"-t",
"--tables",
metavar="TABLE_TAG",
choices=Builder.supportedTables,
nargs="+",
help="Specify the table(s) to be built.",
)
parser.add_argument(
"-d",
"--debug",
action="store_true",
help="Add source-level debugging information to font.",
)
parser.add_argument(
"-v",
"--verbose",
help="Increase the logger verbosity. Multiple -v " "options are allowed.",
action="count",
default=0,
)
parser.add_argument(
"--traceback", help="show traceback for exceptions.", action="store_true"
)
options = parser.parse_args(args)
levels = ["WARNING", "INFO", "DEBUG"]
configLogger(level=levels[min(len(levels) - 1, options.verbose)])
output_font = options.output_font or makeOutputFileName(options.input_font)
log.info("Compiling features to '%s'" % (output_font))
font = TTFont(options.input_font)
try:
addOpenTypeFeatures(
font, options.input_fea, tables=options.tables, debug=options.debug
)
except FeatureLibError as e:
if options.traceback:
raise
log.error(e)
sys.exit(1)
font.save(output_font)
if __name__ == "__main__":
sys.exit(main())

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,22 @@
class FeatureLibError(Exception):
def __init__(self, message, location):
Exception.__init__(self, message)
self.location = location
def __str__(self):
message = Exception.__str__(self)
if self.location:
return f"{self.location}: {message}"
else:
return message
class IncludedFeaNotFound(FeatureLibError):
def __str__(self):
assert self.location is not None
message = (
"The following feature file should be included but cannot be found: "
f"{Exception.__str__(self)}"
)
return f"{self.location}: {message}"

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,287 @@
from fontTools.feaLib.error import FeatureLibError, IncludedFeaNotFound
from fontTools.feaLib.location import FeatureLibLocation
import re
import os
try:
import cython
except ImportError:
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
class Lexer(object):
NUMBER = "NUMBER"
HEXADECIMAL = "HEXADECIMAL"
OCTAL = "OCTAL"
NUMBERS = (NUMBER, HEXADECIMAL, OCTAL)
FLOAT = "FLOAT"
STRING = "STRING"
NAME = "NAME"
FILENAME = "FILENAME"
GLYPHCLASS = "GLYPHCLASS"
CID = "CID"
SYMBOL = "SYMBOL"
COMMENT = "COMMENT"
NEWLINE = "NEWLINE"
ANONYMOUS_BLOCK = "ANONYMOUS_BLOCK"
CHAR_WHITESPACE_ = " \t"
CHAR_NEWLINE_ = "\r\n"
CHAR_SYMBOL_ = ",;:-+'{}[]<>()="
CHAR_DIGIT_ = "0123456789"
CHAR_HEXDIGIT_ = "0123456789ABCDEFabcdef"
CHAR_LETTER_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
CHAR_NAME_START_ = CHAR_LETTER_ + "_+*:.^~!\\"
CHAR_NAME_CONTINUATION_ = CHAR_LETTER_ + CHAR_DIGIT_ + "_.+*:^~!/-"
RE_GLYPHCLASS = re.compile(r"^[A-Za-z_0-9.\-]+$")
MODE_NORMAL_ = "NORMAL"
MODE_FILENAME_ = "FILENAME"
def __init__(self, text, filename):
self.filename_ = filename
self.line_ = 1
self.pos_ = 0
self.line_start_ = 0
self.text_ = text
self.text_length_ = len(text)
self.mode_ = Lexer.MODE_NORMAL_
def __iter__(self):
return self
def next(self): # Python 2
return self.__next__()
def __next__(self): # Python 3
while True:
token_type, token, location = self.next_()
if token_type != Lexer.NEWLINE:
return (token_type, token, location)
def location_(self):
column = self.pos_ - self.line_start_ + 1
return FeatureLibLocation(self.filename_ or "<features>", self.line_, column)
def next_(self):
self.scan_over_(Lexer.CHAR_WHITESPACE_)
location = self.location_()
start = self.pos_
text = self.text_
limit = len(text)
if start >= limit:
raise StopIteration()
cur_char = text[start]
next_char = text[start + 1] if start + 1 < limit else None
if cur_char == "\n":
self.pos_ += 1
self.line_ += 1
self.line_start_ = self.pos_
return (Lexer.NEWLINE, None, location)
if cur_char == "\r":
self.pos_ += 2 if next_char == "\n" else 1
self.line_ += 1
self.line_start_ = self.pos_
return (Lexer.NEWLINE, None, location)
if cur_char == "#":
self.scan_until_(Lexer.CHAR_NEWLINE_)
return (Lexer.COMMENT, text[start : self.pos_], location)
if self.mode_ is Lexer.MODE_FILENAME_:
if cur_char != "(":
raise FeatureLibError("Expected '(' before file name", location)
self.scan_until_(")")
cur_char = text[self.pos_] if self.pos_ < limit else None
if cur_char != ")":
raise FeatureLibError("Expected ')' after file name", location)
self.pos_ += 1
self.mode_ = Lexer.MODE_NORMAL_
return (Lexer.FILENAME, text[start + 1 : self.pos_ - 1], location)
if cur_char == "\\" and next_char in Lexer.CHAR_DIGIT_:
self.pos_ += 1
self.scan_over_(Lexer.CHAR_DIGIT_)
return (Lexer.CID, int(text[start + 1 : self.pos_], 10), location)
if cur_char == "@":
self.pos_ += 1
self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
glyphclass = text[start + 1 : self.pos_]
if len(glyphclass) < 1:
raise FeatureLibError("Expected glyph class name", location)
if not Lexer.RE_GLYPHCLASS.match(glyphclass):
raise FeatureLibError(
"Glyph class names must consist of letters, digits, "
"underscore, period or hyphen",
location,
)
return (Lexer.GLYPHCLASS, glyphclass, location)
if cur_char in Lexer.CHAR_NAME_START_:
self.pos_ += 1
self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
token = text[start : self.pos_]
if token == "include":
self.mode_ = Lexer.MODE_FILENAME_
return (Lexer.NAME, token, location)
if cur_char == "0" and next_char in "xX":
self.pos_ += 2
self.scan_over_(Lexer.CHAR_HEXDIGIT_)
return (Lexer.HEXADECIMAL, int(text[start : self.pos_], 16), location)
if cur_char == "0" and next_char in Lexer.CHAR_DIGIT_:
self.scan_over_(Lexer.CHAR_DIGIT_)
return (Lexer.OCTAL, int(text[start : self.pos_], 8), location)
if cur_char in Lexer.CHAR_DIGIT_:
self.scan_over_(Lexer.CHAR_DIGIT_)
if self.pos_ >= limit or text[self.pos_] != ".":
return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
self.scan_over_(".")
self.scan_over_(Lexer.CHAR_DIGIT_)
return (Lexer.FLOAT, float(text[start : self.pos_]), location)
if cur_char == "-" and next_char in Lexer.CHAR_DIGIT_:
self.pos_ += 1
self.scan_over_(Lexer.CHAR_DIGIT_)
if self.pos_ >= limit or text[self.pos_] != ".":
return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
self.scan_over_(".")
self.scan_over_(Lexer.CHAR_DIGIT_)
return (Lexer.FLOAT, float(text[start : self.pos_]), location)
if cur_char in Lexer.CHAR_SYMBOL_:
self.pos_ += 1
return (Lexer.SYMBOL, cur_char, location)
if cur_char == '"':
self.pos_ += 1
self.scan_until_('"')
if self.pos_ < self.text_length_ and self.text_[self.pos_] == '"':
self.pos_ += 1
# strip newlines embedded within a string
string = re.sub("[\r\n]", "", text[start + 1 : self.pos_ - 1])
return (Lexer.STRING, string, location)
else:
raise FeatureLibError("Expected '\"' to terminate string", location)
raise FeatureLibError("Unexpected character: %r" % cur_char, location)
def scan_over_(self, valid):
p = self.pos_
while p < self.text_length_ and self.text_[p] in valid:
p += 1
self.pos_ = p
def scan_until_(self, stop_at):
p = self.pos_
while p < self.text_length_ and self.text_[p] not in stop_at:
p += 1
self.pos_ = p
def scan_anonymous_block(self, tag):
location = self.location_()
tag = tag.strip()
self.scan_until_(Lexer.CHAR_NEWLINE_)
self.scan_over_(Lexer.CHAR_NEWLINE_)
regexp = r"}\s*" + tag + r"\s*;"
split = re.split(regexp, self.text_[self.pos_ :], maxsplit=1)
if len(split) != 2:
raise FeatureLibError(
"Expected '} %s;' to terminate anonymous block" % tag, location
)
self.pos_ += len(split[0])
return (Lexer.ANONYMOUS_BLOCK, split[0], location)
class IncludingLexer(object):
"""A Lexer that follows include statements.
The OpenType feature file specification states that due to
historical reasons, relative imports should be resolved in this
order:
1. If the source font is UFO format, then relative to the UFO's
font directory
2. relative to the top-level include file
3. relative to the parent include file
We only support 1 (via includeDir) and 2.
"""
def __init__(self, featurefile, *, includeDir=None):
"""Initializes an IncludingLexer.
Behavior:
If includeDir is passed, it will be used to determine the top-level
include directory to use for all encountered include statements. If it is
not passed, ``os.path.dirname(featurefile)`` will be considered the
include directory.
"""
self.lexers_ = [self.make_lexer_(featurefile)]
self.featurefilepath = self.lexers_[0].filename_
self.includeDir = includeDir
def __iter__(self):
return self
def next(self): # Python 2
return self.__next__()
def __next__(self): # Python 3
while self.lexers_:
lexer = self.lexers_[-1]
try:
token_type, token, location = next(lexer)
except StopIteration:
self.lexers_.pop()
continue
if token_type is Lexer.NAME and token == "include":
fname_type, fname_token, fname_location = lexer.next()
if fname_type is not Lexer.FILENAME:
raise FeatureLibError("Expected file name", fname_location)
# semi_type, semi_token, semi_location = lexer.next()
# if semi_type is not Lexer.SYMBOL or semi_token != ";":
# raise FeatureLibError("Expected ';'", semi_location)
if os.path.isabs(fname_token):
path = fname_token
else:
if self.includeDir is not None:
curpath = self.includeDir
elif self.featurefilepath is not None:
curpath = os.path.dirname(self.featurefilepath)
else:
# if the IncludingLexer was initialized from an in-memory
# file-like stream, it doesn't have a 'name' pointing to
# its filesystem path, therefore we fall back to using the
# current working directory to resolve relative includes
curpath = os.getcwd()
path = os.path.join(curpath, fname_token)
if len(self.lexers_) >= 5:
raise FeatureLibError("Too many recursive includes", fname_location)
try:
self.lexers_.append(self.make_lexer_(path))
except FileNotFoundError as err:
raise IncludedFeaNotFound(fname_token, fname_location) from err
else:
return (token_type, token, location)
raise StopIteration()
@staticmethod
def make_lexer_(file_or_path):
if hasattr(file_or_path, "read"):
fileobj, closing = file_or_path, False
else:
filename, closing = file_or_path, True
fileobj = open(filename, "r", encoding="utf-8-sig")
data = fileobj.read()
filename = getattr(fileobj, "name", None)
if closing:
fileobj.close()
return Lexer(data, filename)
def scan_anonymous_block(self, tag):
return self.lexers_[-1].scan_anonymous_block(tag)
class NonIncludingLexer(IncludingLexer):
"""Lexer that does not follow `include` statements, emits them as-is."""
def __next__(self): # Python 3
return next(self.lexers_[0])

View File

@ -0,0 +1,12 @@
from typing import NamedTuple
class FeatureLibLocation(NamedTuple):
"""A location in a feature file"""
file: str
line: int
column: int
def __str__(self):
return f"{self.file}:{self.line}:{self.column}"

View File

@ -0,0 +1,12 @@
from typing import NamedTuple
LOOKUP_DEBUG_INFO_KEY = "com.github.fonttools.feaLib"
LOOKUP_DEBUG_ENV_VAR = "FONTTOOLS_LOOKUP_DEBUGGING"
class LookupDebugInfo(NamedTuple):
"""Information about where a lookup came from, to be embedded in a font"""
location: str
name: str
feature: list

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,113 @@
from fontTools.varLib.models import VariationModel, normalizeValue, piecewiseLinearMap
def Location(loc):
return tuple(sorted(loc.items()))
class VariableScalar:
"""A scalar with different values at different points in the designspace."""
def __init__(self, location_value={}):
self.values = {}
self.axes = {}
for location, value in location_value.items():
self.add_value(location, value)
def __repr__(self):
items = []
for location, value in self.values.items():
loc = ",".join(["%s=%i" % (ax, loc) for ax, loc in location])
items.append("%s:%i" % (loc, value))
return "(" + (" ".join(items)) + ")"
@property
def does_vary(self):
values = list(self.values.values())
return any(v != values[0] for v in values[1:])
@property
def axes_dict(self):
if not self.axes:
raise ValueError(
".axes must be defined on variable scalar before interpolating"
)
return {ax.axisTag: ax for ax in self.axes}
def _normalized_location(self, location):
location = self.fix_location(location)
normalized_location = {}
for axtag in location.keys():
if axtag not in self.axes_dict:
raise ValueError("Unknown axis %s in %s" % (axtag, location))
axis = self.axes_dict[axtag]
normalized_location[axtag] = normalizeValue(
location[axtag], (axis.minValue, axis.defaultValue, axis.maxValue)
)
return Location(normalized_location)
def fix_location(self, location):
location = dict(location)
for tag, axis in self.axes_dict.items():
if tag not in location:
location[tag] = axis.defaultValue
return location
def add_value(self, location, value):
if self.axes:
location = self.fix_location(location)
self.values[Location(location)] = value
def fix_all_locations(self):
self.values = {
Location(self.fix_location(l)): v for l, v in self.values.items()
}
@property
def default(self):
self.fix_all_locations()
key = Location({ax.axisTag: ax.defaultValue for ax in self.axes})
if key not in self.values:
raise ValueError("Default value could not be found")
# I *guess* we could interpolate one, but I don't know how.
return self.values[key]
def value_at_location(self, location, model_cache=None, avar=None):
loc = Location(location)
if loc in self.values.keys():
return self.values[loc]
values = list(self.values.values())
loc = dict(self._normalized_location(loc))
return self.model(model_cache, avar).interpolateFromMasters(loc, values)
def model(self, model_cache=None, avar=None):
if model_cache is not None:
key = tuple(self.values.keys())
if key in model_cache:
return model_cache[key]
locations = [dict(self._normalized_location(k)) for k in self.values.keys()]
if avar is not None:
mapping = avar.segments
locations = [
{
k: piecewiseLinearMap(v, mapping[k]) if k in mapping else v
for k, v in location.items()
}
for location in locations
]
m = VariationModel(locations)
if model_cache is not None:
model_cache[key] = m
return m
def get_deltas_and_supports(self, model_cache=None, avar=None):
values = list(self.values.values())
return self.model(model_cache, avar).getDeltasAndSupports(values)
def add_to_variation_store(self, store_builder, model_cache=None, avar=None):
deltas, supports = self.get_deltas_and_supports(model_cache, avar)
store_builder.setSupports(supports)
index = store_builder.storeDeltas(deltas)
return int(self.default), index

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,36 @@
import pkgutil
import sys
import fontTools
import importlib
import os
from pathlib import Path
def main():
"""Show this help"""
path = fontTools.__path__
descriptions = {}
for pkg in sorted(
mod.name
for mod in pkgutil.walk_packages([fontTools.__path__[0]], prefix="fontTools.")
):
try:
imports = __import__(pkg, globals(), locals(), ["main"])
except ImportError as e:
continue
try:
description = imports.main.__doc__
# Cython modules seem to return "main()" as the docstring
if description and description != "main()":
pkg = pkg.replace("fontTools.", "").replace(".__main__", "")
# show the docstring's first line only
descriptions[pkg] = description.splitlines()[0]
except AttributeError as e:
pass
for pkg, description in descriptions.items():
print("fonttools %-25s %s" % (pkg, description), file=sys.stderr)
if __name__ == "__main__":
print("fonttools v%s\n" % fontTools.__version__, file=sys.stderr)
main()

View File

@ -0,0 +1,248 @@
# Copyright 2013 Google, Inc. All Rights Reserved.
#
# Google Author(s): Behdad Esfahbod, Roozbeh Pournader
from fontTools import ttLib
import fontTools.merge.base
from fontTools.merge.cmap import (
computeMegaGlyphOrder,
computeMegaCmap,
renameCFFCharStrings,
)
from fontTools.merge.layout import layoutPreMerge, layoutPostMerge
from fontTools.merge.options import Options
import fontTools.merge.tables
from fontTools.misc.loggingTools import Timer
from functools import reduce
import sys
import logging
log = logging.getLogger("fontTools.merge")
timer = Timer(logger=logging.getLogger(__name__ + ".timer"), level=logging.INFO)
class Merger(object):
"""Font merger.
This class merges multiple files into a single OpenType font, taking into
account complexities such as OpenType layout (``GSUB``/``GPOS``) tables and
cross-font metrics (for example ``hhea.ascent`` is set to the maximum value
across all the fonts).
If multiple glyphs map to the same Unicode value, and the glyphs are considered
sufficiently different (that is, they differ in any of paths, widths, or
height), then subsequent glyphs are renamed and a lookup in the ``locl``
feature will be created to disambiguate them. For example, if the arguments
are an Arabic font and a Latin font and both contain a set of parentheses,
the Latin glyphs will be renamed to ``parenleft.1`` and ``parenright.1``,
and a lookup will be inserted into the to ``locl`` feature (creating it if
necessary) under the ``latn`` script to substitute ``parenleft`` with
``parenleft.1`` etc.
Restrictions:
- All fonts must have the same units per em.
- If duplicate glyph disambiguation takes place as described above then the
fonts must have a ``GSUB`` table.
Attributes:
options: Currently unused.
"""
def __init__(self, options=None):
if not options:
options = Options()
self.options = options
def _openFonts(self, fontfiles):
fonts = [ttLib.TTFont(fontfile) for fontfile in fontfiles]
for font, fontfile in zip(fonts, fontfiles):
font._merger__fontfile = fontfile
font._merger__name = font["name"].getDebugName(4)
return fonts
def merge(self, fontfiles):
"""Merges fonts together.
Args:
fontfiles: A list of file names to be merged
Returns:
A :class:`fontTools.ttLib.TTFont` object. Call the ``save`` method on
this to write it out to an OTF file.
"""
#
# Settle on a mega glyph order.
#
fonts = self._openFonts(fontfiles)
glyphOrders = [list(font.getGlyphOrder()) for font in fonts]
computeMegaGlyphOrder(self, glyphOrders)
# Take first input file sfntVersion
sfntVersion = fonts[0].sfntVersion
# Reload fonts and set new glyph names on them.
fonts = self._openFonts(fontfiles)
for font, glyphOrder in zip(fonts, glyphOrders):
font.setGlyphOrder(glyphOrder)
if "CFF " in font:
renameCFFCharStrings(self, glyphOrder, font["CFF "])
cmaps = [font["cmap"] for font in fonts]
self.duplicateGlyphsPerFont = [{} for _ in fonts]
computeMegaCmap(self, cmaps)
mega = ttLib.TTFont(sfntVersion=sfntVersion)
mega.setGlyphOrder(self.glyphOrder)
for font in fonts:
self._preMerge(font)
self.fonts = fonts
allTags = reduce(set.union, (list(font.keys()) for font in fonts), set())
allTags.remove("GlyphOrder")
for tag in sorted(allTags):
if tag in self.options.drop_tables:
continue
with timer("merge '%s'" % tag):
tables = [font.get(tag, NotImplemented) for font in fonts]
log.info("Merging '%s'.", tag)
clazz = ttLib.getTableClass(tag)
table = clazz(tag).merge(self, tables)
# XXX Clean this up and use: table = mergeObjects(tables)
if table is not NotImplemented and table is not False:
mega[tag] = table
log.info("Merged '%s'.", tag)
else:
log.info("Dropped '%s'.", tag)
del self.duplicateGlyphsPerFont
del self.fonts
self._postMerge(mega)
return mega
def mergeObjects(self, returnTable, logic, tables):
# Right now we don't use self at all. Will use in the future
# for options and logging.
allKeys = set.union(
set(),
*(vars(table).keys() for table in tables if table is not NotImplemented),
)
for key in allKeys:
log.info(" %s", key)
try:
mergeLogic = logic[key]
except KeyError:
try:
mergeLogic = logic["*"]
except KeyError:
raise Exception(
"Don't know how to merge key %s of class %s"
% (key, returnTable.__class__.__name__)
)
if mergeLogic is NotImplemented:
continue
value = mergeLogic(getattr(table, key, NotImplemented) for table in tables)
if value is not NotImplemented:
setattr(returnTable, key, value)
return returnTable
def _preMerge(self, font):
layoutPreMerge(font)
def _postMerge(self, font):
layoutPostMerge(font)
if "OS/2" in font:
# https://github.com/fonttools/fonttools/issues/2538
# TODO: Add an option to disable this?
font["OS/2"].recalcAvgCharWidth(font)
__all__ = ["Options", "Merger", "main"]
@timer("make one with everything (TOTAL TIME)")
def main(args=None):
"""Merge multiple fonts into one"""
from fontTools import configLogger
if args is None:
args = sys.argv[1:]
options = Options()
args = options.parse_opts(args)
fontfiles = []
if options.input_file:
with open(options.input_file) as inputfile:
fontfiles = [
line.strip()
for line in inputfile.readlines()
if not line.lstrip().startswith("#")
]
for g in args:
fontfiles.append(g)
if len(fontfiles) < 1:
print(
"usage: pyftmerge [font1 ... fontN] [--input-file=filelist.txt] [--output-file=merged.ttf] [--import-file=tables.ttx]",
file=sys.stderr,
)
print(
" [--drop-tables=tags] [--verbose] [--timing]",
file=sys.stderr,
)
print("", file=sys.stderr)
print(" font1 ... fontN Files to merge.", file=sys.stderr)
print(
" --input-file=<filename> Read files to merge from a text file, each path new line. # Comment lines allowed.",
file=sys.stderr,
)
print(
" --output-file=<filename> Specify output file name (default: merged.ttf).",
file=sys.stderr,
)
print(
" --import-file=<filename> TTX file to import after merging. This can be used to set metadata.",
file=sys.stderr,
)
print(
" --drop-tables=<table tags> Comma separated list of table tags to skip, case sensitive.",
file=sys.stderr,
)
print(
" --verbose Output progress information.",
file=sys.stderr,
)
print(" --timing Output progress timing.", file=sys.stderr)
return 1
configLogger(level=logging.INFO if options.verbose else logging.WARNING)
if options.timing:
timer.logger.setLevel(logging.DEBUG)
else:
timer.logger.disabled = True
merger = Merger(options=options)
font = merger.merge(fontfiles)
if options.import_file:
font.importXML(options.import_file)
with timer("compile and save font"):
font.save(options.output_file)
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,6 @@
import sys
from fontTools.merge import main
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,81 @@
# Copyright 2013 Google, Inc. All Rights Reserved.
#
# Google Author(s): Behdad Esfahbod, Roozbeh Pournader
from fontTools.ttLib.tables.DefaultTable import DefaultTable
import logging
log = logging.getLogger("fontTools.merge")
def add_method(*clazzes, **kwargs):
"""Returns a decorator function that adds a new method to one or
more classes."""
allowDefault = kwargs.get("allowDefaultTable", False)
def wrapper(method):
done = []
for clazz in clazzes:
if clazz in done:
continue # Support multiple names of a clazz
done.append(clazz)
assert allowDefault or clazz != DefaultTable, "Oops, table class not found."
assert (
method.__name__ not in clazz.__dict__
), "Oops, class '%s' has method '%s'." % (clazz.__name__, method.__name__)
setattr(clazz, method.__name__, method)
return None
return wrapper
def mergeObjects(lst):
lst = [item for item in lst if item is not NotImplemented]
if not lst:
return NotImplemented
lst = [item for item in lst if item is not None]
if not lst:
return None
clazz = lst[0].__class__
assert all(type(item) == clazz for item in lst), lst
logic = clazz.mergeMap
returnTable = clazz()
returnDict = {}
allKeys = set.union(set(), *(vars(table).keys() for table in lst))
for key in allKeys:
try:
mergeLogic = logic[key]
except KeyError:
try:
mergeLogic = logic["*"]
except KeyError:
raise Exception(
"Don't know how to merge key %s of class %s" % (key, clazz.__name__)
)
if mergeLogic is NotImplemented:
continue
value = mergeLogic(getattr(table, key, NotImplemented) for table in lst)
if value is not NotImplemented:
returnDict[key] = value
returnTable.__dict__ = returnDict
return returnTable
@add_method(DefaultTable, allowDefaultTable=True)
def merge(self, m, tables):
if not hasattr(self, "mergeMap"):
log.info("Don't know how to merge '%s'.", self.tableTag)
return NotImplemented
logic = self.mergeMap
if isinstance(logic, dict):
return m.mergeObjects(self, self.mergeMap, tables)
else:
return logic(tables)

View File

@ -0,0 +1,141 @@
# Copyright 2013 Google, Inc. All Rights Reserved.
#
# Google Author(s): Behdad Esfahbod, Roozbeh Pournader
from fontTools.merge.unicode import is_Default_Ignorable
from fontTools.pens.recordingPen import DecomposingRecordingPen
import logging
log = logging.getLogger("fontTools.merge")
def computeMegaGlyphOrder(merger, glyphOrders):
"""Modifies passed-in glyphOrders to reflect new glyph names.
Stores merger.glyphOrder."""
megaOrder = {}
for glyphOrder in glyphOrders:
for i, glyphName in enumerate(glyphOrder):
if glyphName in megaOrder:
n = megaOrder[glyphName]
while (glyphName + "." + repr(n)) in megaOrder:
n += 1
megaOrder[glyphName] = n
glyphName += "." + repr(n)
glyphOrder[i] = glyphName
megaOrder[glyphName] = 1
merger.glyphOrder = megaOrder = list(megaOrder.keys())
def _glyphsAreSame(
glyphSet1,
glyphSet2,
glyph1,
glyph2,
advanceTolerance=0.05,
advanceToleranceEmpty=0.20,
):
pen1 = DecomposingRecordingPen(glyphSet1)
pen2 = DecomposingRecordingPen(glyphSet2)
g1 = glyphSet1[glyph1]
g2 = glyphSet2[glyph2]
g1.draw(pen1)
g2.draw(pen2)
if pen1.value != pen2.value:
return False
# Allow more width tolerance for glyphs with no ink
tolerance = advanceTolerance if pen1.value else advanceToleranceEmpty
# TODO Warn if advances not the same but within tolerance.
if abs(g1.width - g2.width) > g1.width * tolerance:
return False
if hasattr(g1, "height") and g1.height is not None:
if abs(g1.height - g2.height) > g1.height * tolerance:
return False
return True
# Valid (format, platformID, platEncID) triplets for cmap subtables containing
# Unicode BMP-only and Unicode Full Repertoire semantics.
# Cf. OpenType spec for "Platform specific encodings":
# https://docs.microsoft.com/en-us/typography/opentype/spec/name
class _CmapUnicodePlatEncodings:
BMP = {(4, 3, 1), (4, 0, 3), (4, 0, 4), (4, 0, 6)}
FullRepertoire = {(12, 3, 10), (12, 0, 4), (12, 0, 6)}
def computeMegaCmap(merger, cmapTables):
"""Sets merger.cmap and merger.glyphOrder."""
# TODO Handle format=14.
# Only merge format 4 and 12 Unicode subtables, ignores all other subtables
# If there is a format 12 table for a font, ignore the format 4 table of it
chosenCmapTables = []
for fontIdx, table in enumerate(cmapTables):
format4 = None
format12 = None
for subtable in table.tables:
properties = (subtable.format, subtable.platformID, subtable.platEncID)
if properties in _CmapUnicodePlatEncodings.BMP:
format4 = subtable
elif properties in _CmapUnicodePlatEncodings.FullRepertoire:
format12 = subtable
else:
log.warning(
"Dropped cmap subtable from font '%s':\t"
"format %2s, platformID %2s, platEncID %2s",
fontIdx,
subtable.format,
subtable.platformID,
subtable.platEncID,
)
if format12 is not None:
chosenCmapTables.append((format12, fontIdx))
elif format4 is not None:
chosenCmapTables.append((format4, fontIdx))
# Build the unicode mapping
merger.cmap = cmap = {}
fontIndexForGlyph = {}
glyphSets = [None for f in merger.fonts] if hasattr(merger, "fonts") else None
for table, fontIdx in chosenCmapTables:
# handle duplicates
for uni, gid in table.cmap.items():
oldgid = cmap.get(uni, None)
if oldgid is None:
cmap[uni] = gid
fontIndexForGlyph[gid] = fontIdx
elif is_Default_Ignorable(uni) or uni in (0x25CC,): # U+25CC DOTTED CIRCLE
continue
elif oldgid != gid:
# Char previously mapped to oldgid, now to gid.
# Record, to fix up in GSUB 'locl' later.
if merger.duplicateGlyphsPerFont[fontIdx].get(oldgid) is None:
if glyphSets is not None:
oldFontIdx = fontIndexForGlyph[oldgid]
for idx in (fontIdx, oldFontIdx):
if glyphSets[idx] is None:
glyphSets[idx] = merger.fonts[idx].getGlyphSet()
# if _glyphsAreSame(glyphSets[oldFontIdx], glyphSets[fontIdx], oldgid, gid):
# continue
merger.duplicateGlyphsPerFont[fontIdx][oldgid] = gid
elif merger.duplicateGlyphsPerFont[fontIdx][oldgid] != gid:
# Char previously mapped to oldgid but oldgid is already remapped to a different
# gid, because of another Unicode character.
# TODO: Try harder to do something about these.
log.warning(
"Dropped mapping from codepoint %#06X to glyphId '%s'", uni, gid
)
def renameCFFCharStrings(merger, glyphOrder, cffTable):
"""Rename topDictIndex charStrings based on glyphOrder."""
td = cffTable.cff.topDictIndex[0]
charStrings = {}
for i, v in enumerate(td.CharStrings.charStrings.values()):
glyphName = glyphOrder[i]
charStrings[glyphName] = v
td.CharStrings.charStrings = charStrings
td.charset = list(glyphOrder)

View File

@ -0,0 +1,526 @@
# Copyright 2013 Google, Inc. All Rights Reserved.
#
# Google Author(s): Behdad Esfahbod, Roozbeh Pournader
from fontTools import ttLib
from fontTools.ttLib.tables.DefaultTable import DefaultTable
from fontTools.ttLib.tables import otTables
from fontTools.merge.base import add_method, mergeObjects
from fontTools.merge.util import *
import logging
log = logging.getLogger("fontTools.merge")
def mergeLookupLists(lst):
# TODO Do smarter merge.
return sumLists(lst)
def mergeFeatures(lst):
assert lst
self = otTables.Feature()
self.FeatureParams = None
self.LookupListIndex = mergeLookupLists(
[l.LookupListIndex for l in lst if l.LookupListIndex]
)
self.LookupCount = len(self.LookupListIndex)
return self
def mergeFeatureLists(lst):
d = {}
for l in lst:
for f in l:
tag = f.FeatureTag
if tag not in d:
d[tag] = []
d[tag].append(f.Feature)
ret = []
for tag in sorted(d.keys()):
rec = otTables.FeatureRecord()
rec.FeatureTag = tag
rec.Feature = mergeFeatures(d[tag])
ret.append(rec)
return ret
def mergeLangSyses(lst):
assert lst
# TODO Support merging ReqFeatureIndex
assert all(l.ReqFeatureIndex == 0xFFFF for l in lst)
self = otTables.LangSys()
self.LookupOrder = None
self.ReqFeatureIndex = 0xFFFF
self.FeatureIndex = mergeFeatureLists(
[l.FeatureIndex for l in lst if l.FeatureIndex]
)
self.FeatureCount = len(self.FeatureIndex)
return self
def mergeScripts(lst):
assert lst
if len(lst) == 1:
return lst[0]
langSyses = {}
for sr in lst:
for lsr in sr.LangSysRecord:
if lsr.LangSysTag not in langSyses:
langSyses[lsr.LangSysTag] = []
langSyses[lsr.LangSysTag].append(lsr.LangSys)
lsrecords = []
for tag, langSys_list in sorted(langSyses.items()):
lsr = otTables.LangSysRecord()
lsr.LangSys = mergeLangSyses(langSys_list)
lsr.LangSysTag = tag
lsrecords.append(lsr)
self = otTables.Script()
self.LangSysRecord = lsrecords
self.LangSysCount = len(lsrecords)
dfltLangSyses = [s.DefaultLangSys for s in lst if s.DefaultLangSys]
if dfltLangSyses:
self.DefaultLangSys = mergeLangSyses(dfltLangSyses)
else:
self.DefaultLangSys = None
return self
def mergeScriptRecords(lst):
d = {}
for l in lst:
for s in l:
tag = s.ScriptTag
if tag not in d:
d[tag] = []
d[tag].append(s.Script)
ret = []
for tag in sorted(d.keys()):
rec = otTables.ScriptRecord()
rec.ScriptTag = tag
rec.Script = mergeScripts(d[tag])
ret.append(rec)
return ret
otTables.ScriptList.mergeMap = {
"ScriptCount": lambda lst: None, # TODO
"ScriptRecord": mergeScriptRecords,
}
otTables.BaseScriptList.mergeMap = {
"BaseScriptCount": lambda lst: None, # TODO
# TODO: Merge duplicate entries
"BaseScriptRecord": lambda lst: sorted(
sumLists(lst), key=lambda s: s.BaseScriptTag
),
}
otTables.FeatureList.mergeMap = {
"FeatureCount": sum,
"FeatureRecord": lambda lst: sorted(sumLists(lst), key=lambda s: s.FeatureTag),
}
otTables.LookupList.mergeMap = {
"LookupCount": sum,
"Lookup": sumLists,
}
otTables.Coverage.mergeMap = {
"Format": min,
"glyphs": sumLists,
}
otTables.ClassDef.mergeMap = {
"Format": min,
"classDefs": sumDicts,
}
otTables.LigCaretList.mergeMap = {
"Coverage": mergeObjects,
"LigGlyphCount": sum,
"LigGlyph": sumLists,
}
otTables.AttachList.mergeMap = {
"Coverage": mergeObjects,
"GlyphCount": sum,
"AttachPoint": sumLists,
}
# XXX Renumber MarkFilterSets of lookups
otTables.MarkGlyphSetsDef.mergeMap = {
"MarkSetTableFormat": equal,
"MarkSetCount": sum,
"Coverage": sumLists,
}
otTables.Axis.mergeMap = {
"*": mergeObjects,
}
# XXX Fix BASE table merging
otTables.BaseTagList.mergeMap = {
"BaseTagCount": sum,
"BaselineTag": sumLists,
}
otTables.GDEF.mergeMap = otTables.GSUB.mergeMap = otTables.GPOS.mergeMap = (
otTables.BASE.mergeMap
) = otTables.JSTF.mergeMap = otTables.MATH.mergeMap = {
"*": mergeObjects,
"Version": max,
}
ttLib.getTableClass("GDEF").mergeMap = ttLib.getTableClass("GSUB").mergeMap = (
ttLib.getTableClass("GPOS").mergeMap
) = ttLib.getTableClass("BASE").mergeMap = ttLib.getTableClass(
"JSTF"
).mergeMap = ttLib.getTableClass(
"MATH"
).mergeMap = {
"tableTag": onlyExisting(equal), # XXX clean me up
"table": mergeObjects,
}
@add_method(ttLib.getTableClass("GSUB"))
def merge(self, m, tables):
assert len(tables) == len(m.duplicateGlyphsPerFont)
for i, (table, dups) in enumerate(zip(tables, m.duplicateGlyphsPerFont)):
if not dups:
continue
if table is None or table is NotImplemented:
log.warning(
"Have non-identical duplicates to resolve for '%s' but no GSUB. Are duplicates intended?: %s",
m.fonts[i]._merger__name,
dups,
)
continue
synthFeature = None
synthLookup = None
for script in table.table.ScriptList.ScriptRecord:
if script.ScriptTag == "DFLT":
continue # XXX
for langsys in [script.Script.DefaultLangSys] + [
l.LangSys for l in script.Script.LangSysRecord
]:
if langsys is None:
continue # XXX Create!
feature = [v for v in langsys.FeatureIndex if v.FeatureTag == "locl"]
assert len(feature) <= 1
if feature:
feature = feature[0]
else:
if not synthFeature:
synthFeature = otTables.FeatureRecord()
synthFeature.FeatureTag = "locl"
f = synthFeature.Feature = otTables.Feature()
f.FeatureParams = None
f.LookupCount = 0
f.LookupListIndex = []
table.table.FeatureList.FeatureRecord.append(synthFeature)
table.table.FeatureList.FeatureCount += 1
feature = synthFeature
langsys.FeatureIndex.append(feature)
langsys.FeatureIndex.sort(key=lambda v: v.FeatureTag)
if not synthLookup:
subtable = otTables.SingleSubst()
subtable.mapping = dups
synthLookup = otTables.Lookup()
synthLookup.LookupFlag = 0
synthLookup.LookupType = 1
synthLookup.SubTableCount = 1
synthLookup.SubTable = [subtable]
if table.table.LookupList is None:
# mtiLib uses None as default value for LookupList,
# while feaLib points to an empty array with count 0
# TODO: make them do the same
table.table.LookupList = otTables.LookupList()
table.table.LookupList.Lookup = []
table.table.LookupList.LookupCount = 0
table.table.LookupList.Lookup.append(synthLookup)
table.table.LookupList.LookupCount += 1
if feature.Feature.LookupListIndex[:1] != [synthLookup]:
feature.Feature.LookupListIndex[:0] = [synthLookup]
feature.Feature.LookupCount += 1
DefaultTable.merge(self, m, tables)
return self
@add_method(
otTables.SingleSubst,
otTables.MultipleSubst,
otTables.AlternateSubst,
otTables.LigatureSubst,
otTables.ReverseChainSingleSubst,
otTables.SinglePos,
otTables.PairPos,
otTables.CursivePos,
otTables.MarkBasePos,
otTables.MarkLigPos,
otTables.MarkMarkPos,
)
def mapLookups(self, lookupMap):
pass
# Copied and trimmed down from subset.py
@add_method(
otTables.ContextSubst,
otTables.ChainContextSubst,
otTables.ContextPos,
otTables.ChainContextPos,
)
def __merge_classify_context(self):
class ContextHelper(object):
def __init__(self, klass, Format):
if klass.__name__.endswith("Subst"):
Typ = "Sub"
Type = "Subst"
else:
Typ = "Pos"
Type = "Pos"
if klass.__name__.startswith("Chain"):
Chain = "Chain"
else:
Chain = ""
ChainTyp = Chain + Typ
self.Typ = Typ
self.Type = Type
self.Chain = Chain
self.ChainTyp = ChainTyp
self.LookupRecord = Type + "LookupRecord"
if Format == 1:
self.Rule = ChainTyp + "Rule"
self.RuleSet = ChainTyp + "RuleSet"
elif Format == 2:
self.Rule = ChainTyp + "ClassRule"
self.RuleSet = ChainTyp + "ClassSet"
if self.Format not in [1, 2, 3]:
return None # Don't shoot the messenger; let it go
if not hasattr(self.__class__, "_merge__ContextHelpers"):
self.__class__._merge__ContextHelpers = {}
if self.Format not in self.__class__._merge__ContextHelpers:
helper = ContextHelper(self.__class__, self.Format)
self.__class__._merge__ContextHelpers[self.Format] = helper
return self.__class__._merge__ContextHelpers[self.Format]
@add_method(
otTables.ContextSubst,
otTables.ChainContextSubst,
otTables.ContextPos,
otTables.ChainContextPos,
)
def mapLookups(self, lookupMap):
c = self.__merge_classify_context()
if self.Format in [1, 2]:
for rs in getattr(self, c.RuleSet):
if not rs:
continue
for r in getattr(rs, c.Rule):
if not r:
continue
for ll in getattr(r, c.LookupRecord):
if not ll:
continue
ll.LookupListIndex = lookupMap[ll.LookupListIndex]
elif self.Format == 3:
for ll in getattr(self, c.LookupRecord):
if not ll:
continue
ll.LookupListIndex = lookupMap[ll.LookupListIndex]
else:
assert 0, "unknown format: %s" % self.Format
@add_method(otTables.ExtensionSubst, otTables.ExtensionPos)
def mapLookups(self, lookupMap):
if self.Format == 1:
self.ExtSubTable.mapLookups(lookupMap)
else:
assert 0, "unknown format: %s" % self.Format
@add_method(otTables.Lookup)
def mapLookups(self, lookupMap):
for st in self.SubTable:
if not st:
continue
st.mapLookups(lookupMap)
@add_method(otTables.LookupList)
def mapLookups(self, lookupMap):
for l in self.Lookup:
if not l:
continue
l.mapLookups(lookupMap)
@add_method(otTables.Lookup)
def mapMarkFilteringSets(self, markFilteringSetMap):
if self.LookupFlag & 0x0010:
self.MarkFilteringSet = markFilteringSetMap[self.MarkFilteringSet]
@add_method(otTables.LookupList)
def mapMarkFilteringSets(self, markFilteringSetMap):
for l in self.Lookup:
if not l:
continue
l.mapMarkFilteringSets(markFilteringSetMap)
@add_method(otTables.Feature)
def mapLookups(self, lookupMap):
self.LookupListIndex = [lookupMap[i] for i in self.LookupListIndex]
@add_method(otTables.FeatureList)
def mapLookups(self, lookupMap):
for f in self.FeatureRecord:
if not f or not f.Feature:
continue
f.Feature.mapLookups(lookupMap)
@add_method(otTables.DefaultLangSys, otTables.LangSys)
def mapFeatures(self, featureMap):
self.FeatureIndex = [featureMap[i] for i in self.FeatureIndex]
if self.ReqFeatureIndex != 65535:
self.ReqFeatureIndex = featureMap[self.ReqFeatureIndex]
@add_method(otTables.Script)
def mapFeatures(self, featureMap):
if self.DefaultLangSys:
self.DefaultLangSys.mapFeatures(featureMap)
for l in self.LangSysRecord:
if not l or not l.LangSys:
continue
l.LangSys.mapFeatures(featureMap)
@add_method(otTables.ScriptList)
def mapFeatures(self, featureMap):
for s in self.ScriptRecord:
if not s or not s.Script:
continue
s.Script.mapFeatures(featureMap)
def layoutPreMerge(font):
# Map indices to references
GDEF = font.get("GDEF")
GSUB = font.get("GSUB")
GPOS = font.get("GPOS")
for t in [GSUB, GPOS]:
if not t:
continue
if t.table.LookupList:
lookupMap = {i: v for i, v in enumerate(t.table.LookupList.Lookup)}
t.table.LookupList.mapLookups(lookupMap)
t.table.FeatureList.mapLookups(lookupMap)
if (
GDEF
and GDEF.table.Version >= 0x00010002
and GDEF.table.MarkGlyphSetsDef
):
markFilteringSetMap = {
i: v for i, v in enumerate(GDEF.table.MarkGlyphSetsDef.Coverage)
}
t.table.LookupList.mapMarkFilteringSets(markFilteringSetMap)
if t.table.FeatureList and t.table.ScriptList:
featureMap = {i: v for i, v in enumerate(t.table.FeatureList.FeatureRecord)}
t.table.ScriptList.mapFeatures(featureMap)
# TODO FeatureParams nameIDs
def layoutPostMerge(font):
# Map references back to indices
GDEF = font.get("GDEF")
GSUB = font.get("GSUB")
GPOS = font.get("GPOS")
for t in [GSUB, GPOS]:
if not t:
continue
if t.table.FeatureList and t.table.ScriptList:
# Collect unregistered (new) features.
featureMap = GregariousIdentityDict(t.table.FeatureList.FeatureRecord)
t.table.ScriptList.mapFeatures(featureMap)
# Record used features.
featureMap = AttendanceRecordingIdentityDict(
t.table.FeatureList.FeatureRecord
)
t.table.ScriptList.mapFeatures(featureMap)
usedIndices = featureMap.s
# Remove unused features
t.table.FeatureList.FeatureRecord = [
f
for i, f in enumerate(t.table.FeatureList.FeatureRecord)
if i in usedIndices
]
# Map back to indices.
featureMap = NonhashableDict(t.table.FeatureList.FeatureRecord)
t.table.ScriptList.mapFeatures(featureMap)
t.table.FeatureList.FeatureCount = len(t.table.FeatureList.FeatureRecord)
if t.table.LookupList:
# Collect unregistered (new) lookups.
lookupMap = GregariousIdentityDict(t.table.LookupList.Lookup)
t.table.FeatureList.mapLookups(lookupMap)
t.table.LookupList.mapLookups(lookupMap)
# Record used lookups.
lookupMap = AttendanceRecordingIdentityDict(t.table.LookupList.Lookup)
t.table.FeatureList.mapLookups(lookupMap)
t.table.LookupList.mapLookups(lookupMap)
usedIndices = lookupMap.s
# Remove unused lookups
t.table.LookupList.Lookup = [
l for i, l in enumerate(t.table.LookupList.Lookup) if i in usedIndices
]
# Map back to indices.
lookupMap = NonhashableDict(t.table.LookupList.Lookup)
t.table.FeatureList.mapLookups(lookupMap)
t.table.LookupList.mapLookups(lookupMap)
t.table.LookupList.LookupCount = len(t.table.LookupList.Lookup)
if GDEF and GDEF.table.Version >= 0x00010002:
markFilteringSetMap = NonhashableDict(
GDEF.table.MarkGlyphSetsDef.Coverage
)
t.table.LookupList.mapMarkFilteringSets(markFilteringSetMap)
# TODO FeatureParams nameIDs

View File

@ -0,0 +1,85 @@
# Copyright 2013 Google, Inc. All Rights Reserved.
#
# Google Author(s): Behdad Esfahbod, Roozbeh Pournader
class Options(object):
class UnknownOptionError(Exception):
pass
def __init__(self, **kwargs):
self.verbose = False
self.timing = False
self.drop_tables = []
self.input_file = None
self.output_file = "merged.ttf"
self.import_file = None
self.set(**kwargs)
def set(self, **kwargs):
for k, v in kwargs.items():
if not hasattr(self, k):
raise self.UnknownOptionError("Unknown option '%s'" % k)
setattr(self, k, v)
def parse_opts(self, argv, ignore_unknown=[]):
ret = []
opts = {}
for a in argv:
orig_a = a
if not a.startswith("--"):
ret.append(a)
continue
a = a[2:]
i = a.find("=")
op = "="
if i == -1:
if a.startswith("no-"):
k = a[3:]
v = False
else:
k = a
v = True
else:
k = a[:i]
if k[-1] in "-+":
op = k[-1] + "=" # Ops is '-=' or '+=' now.
k = k[:-1]
v = a[i + 1 :]
ok = k
k = k.replace("-", "_")
if not hasattr(self, k):
if ignore_unknown is True or ok in ignore_unknown:
ret.append(orig_a)
continue
else:
raise self.UnknownOptionError("Unknown option '%s'" % a)
ov = getattr(self, k)
if isinstance(ov, bool):
v = bool(v)
elif isinstance(ov, int):
v = int(v)
elif isinstance(ov, list):
vv = v.split(",")
if vv == [""]:
vv = []
vv = [int(x, 0) if len(x) and x[0] in "0123456789" else x for x in vv]
if op == "=":
v = vv
elif op == "+=":
v = ov
v.extend(vv)
elif op == "-=":
v = ov
for x in vv:
if x in v:
v.remove(x)
else:
assert 0
opts[k] = v
self.set(**opts)
return ret

View File

@ -0,0 +1,341 @@
# Copyright 2013 Google, Inc. All Rights Reserved.
#
# Google Author(s): Behdad Esfahbod, Roozbeh Pournader
from fontTools import ttLib, cffLib
from fontTools.misc.psCharStrings import T2WidthExtractor
from fontTools.ttLib.tables.DefaultTable import DefaultTable
from fontTools.merge.base import add_method, mergeObjects
from fontTools.merge.cmap import computeMegaCmap
from fontTools.merge.util import *
import logging
log = logging.getLogger("fontTools.merge")
ttLib.getTableClass("maxp").mergeMap = {
"*": max,
"tableTag": equal,
"tableVersion": equal,
"numGlyphs": sum,
"maxStorage": first,
"maxFunctionDefs": first,
"maxInstructionDefs": first,
# TODO When we correctly merge hinting data, update these values:
# maxFunctionDefs, maxInstructionDefs, maxSizeOfInstructions
}
headFlagsMergeBitMap = {
"size": 16,
"*": bitwise_or,
1: bitwise_and, # Baseline at y = 0
2: bitwise_and, # lsb at x = 0
3: bitwise_and, # Force ppem to integer values. FIXME?
5: bitwise_and, # Font is vertical
6: lambda bit: 0, # Always set to zero
11: bitwise_and, # Font data is 'lossless'
13: bitwise_and, # Optimized for ClearType
14: bitwise_and, # Last resort font. FIXME? equal or first may be better
15: lambda bit: 0, # Always set to zero
}
ttLib.getTableClass("head").mergeMap = {
"tableTag": equal,
"tableVersion": max,
"fontRevision": max,
"checkSumAdjustment": lambda lst: 0, # We need *something* here
"magicNumber": equal,
"flags": mergeBits(headFlagsMergeBitMap),
"unitsPerEm": equal,
"created": current_time,
"modified": current_time,
"xMin": min,
"yMin": min,
"xMax": max,
"yMax": max,
"macStyle": first,
"lowestRecPPEM": max,
"fontDirectionHint": lambda lst: 2,
"indexToLocFormat": first,
"glyphDataFormat": equal,
}
ttLib.getTableClass("hhea").mergeMap = {
"*": equal,
"tableTag": equal,
"tableVersion": max,
"ascent": max,
"descent": min,
"lineGap": max,
"advanceWidthMax": max,
"minLeftSideBearing": min,
"minRightSideBearing": min,
"xMaxExtent": max,
"caretSlopeRise": first,
"caretSlopeRun": first,
"caretOffset": first,
"numberOfHMetrics": recalculate,
}
ttLib.getTableClass("vhea").mergeMap = {
"*": equal,
"tableTag": equal,
"tableVersion": max,
"ascent": max,
"descent": min,
"lineGap": max,
"advanceHeightMax": max,
"minTopSideBearing": min,
"minBottomSideBearing": min,
"yMaxExtent": max,
"caretSlopeRise": first,
"caretSlopeRun": first,
"caretOffset": first,
"numberOfVMetrics": recalculate,
}
os2FsTypeMergeBitMap = {
"size": 16,
"*": lambda bit: 0,
1: bitwise_or, # no embedding permitted
2: bitwise_and, # allow previewing and printing documents
3: bitwise_and, # allow editing documents
8: bitwise_or, # no subsetting permitted
9: bitwise_or, # no embedding of outlines permitted
}
def mergeOs2FsType(lst):
lst = list(lst)
if all(item == 0 for item in lst):
return 0
# Compute least restrictive logic for each fsType value
for i in range(len(lst)):
# unset bit 1 (no embedding permitted) if either bit 2 or 3 is set
if lst[i] & 0x000C:
lst[i] &= ~0x0002
# set bit 2 (allow previewing) if bit 3 is set (allow editing)
elif lst[i] & 0x0008:
lst[i] |= 0x0004
# set bits 2 and 3 if everything is allowed
elif lst[i] == 0:
lst[i] = 0x000C
fsType = mergeBits(os2FsTypeMergeBitMap)(lst)
# unset bits 2 and 3 if bit 1 is set (some font is "no embedding")
if fsType & 0x0002:
fsType &= ~0x000C
return fsType
ttLib.getTableClass("OS/2").mergeMap = {
"*": first,
"tableTag": equal,
"version": max,
"xAvgCharWidth": first, # Will be recalculated at the end on the merged font
"fsType": mergeOs2FsType, # Will be overwritten
"panose": first, # FIXME: should really be the first Latin font
"ulUnicodeRange1": bitwise_or,
"ulUnicodeRange2": bitwise_or,
"ulUnicodeRange3": bitwise_or,
"ulUnicodeRange4": bitwise_or,
"fsFirstCharIndex": min,
"fsLastCharIndex": max,
"sTypoAscender": max,
"sTypoDescender": min,
"sTypoLineGap": max,
"usWinAscent": max,
"usWinDescent": max,
# Version 1
"ulCodePageRange1": onlyExisting(bitwise_or),
"ulCodePageRange2": onlyExisting(bitwise_or),
# Version 2, 3, 4
"sxHeight": onlyExisting(max),
"sCapHeight": onlyExisting(max),
"usDefaultChar": onlyExisting(first),
"usBreakChar": onlyExisting(first),
"usMaxContext": onlyExisting(max),
# version 5
"usLowerOpticalPointSize": onlyExisting(min),
"usUpperOpticalPointSize": onlyExisting(max),
}
@add_method(ttLib.getTableClass("OS/2"))
def merge(self, m, tables):
DefaultTable.merge(self, m, tables)
if self.version < 2:
# bits 8 and 9 are reserved and should be set to zero
self.fsType &= ~0x0300
if self.version >= 3:
# Only one of bits 1, 2, and 3 may be set. We already take
# care of bit 1 implications in mergeOs2FsType. So unset
# bit 2 if bit 3 is already set.
if self.fsType & 0x0008:
self.fsType &= ~0x0004
return self
ttLib.getTableClass("post").mergeMap = {
"*": first,
"tableTag": equal,
"formatType": max,
"isFixedPitch": min,
"minMemType42": max,
"maxMemType42": lambda lst: 0,
"minMemType1": max,
"maxMemType1": lambda lst: 0,
"mapping": onlyExisting(sumDicts),
"extraNames": lambda lst: [],
}
ttLib.getTableClass("vmtx").mergeMap = ttLib.getTableClass("hmtx").mergeMap = {
"tableTag": equal,
"metrics": sumDicts,
}
ttLib.getTableClass("name").mergeMap = {
"tableTag": equal,
"names": first, # FIXME? Does mixing name records make sense?
}
ttLib.getTableClass("loca").mergeMap = {
"*": recalculate,
"tableTag": equal,
}
ttLib.getTableClass("glyf").mergeMap = {
"tableTag": equal,
"glyphs": sumDicts,
"glyphOrder": sumLists,
"_reverseGlyphOrder": recalculate,
"axisTags": equal,
}
@add_method(ttLib.getTableClass("glyf"))
def merge(self, m, tables):
for i, table in enumerate(tables):
for g in table.glyphs.values():
if i:
# Drop hints for all but first font, since
# we don't map functions / CVT values.
g.removeHinting()
# Expand composite glyphs to load their
# composite glyph names.
if g.isComposite():
g.expand(table)
return DefaultTable.merge(self, m, tables)
ttLib.getTableClass("prep").mergeMap = lambda self, lst: first(lst)
ttLib.getTableClass("fpgm").mergeMap = lambda self, lst: first(lst)
ttLib.getTableClass("cvt ").mergeMap = lambda self, lst: first(lst)
ttLib.getTableClass("gasp").mergeMap = lambda self, lst: first(
lst
) # FIXME? Appears irreconcilable
@add_method(ttLib.getTableClass("CFF "))
def merge(self, m, tables):
if any(hasattr(table.cff[0], "FDSelect") for table in tables):
raise NotImplementedError("Merging CID-keyed CFF tables is not supported yet")
for table in tables:
table.cff.desubroutinize()
newcff = tables[0]
newfont = newcff.cff[0]
private = newfont.Private
newDefaultWidthX, newNominalWidthX = private.defaultWidthX, private.nominalWidthX
storedNamesStrings = []
glyphOrderStrings = []
glyphOrder = set(newfont.getGlyphOrder())
for name in newfont.strings.strings:
if name not in glyphOrder:
storedNamesStrings.append(name)
else:
glyphOrderStrings.append(name)
chrset = list(newfont.charset)
newcs = newfont.CharStrings
log.debug("FONT 0 CharStrings: %d.", len(newcs))
for i, table in enumerate(tables[1:], start=1):
font = table.cff[0]
defaultWidthX, nominalWidthX = (
font.Private.defaultWidthX,
font.Private.nominalWidthX,
)
widthsDiffer = (
defaultWidthX != newDefaultWidthX or nominalWidthX != newNominalWidthX
)
font.Private = private
fontGlyphOrder = set(font.getGlyphOrder())
for name in font.strings.strings:
if name in fontGlyphOrder:
glyphOrderStrings.append(name)
cs = font.CharStrings
gs = table.cff.GlobalSubrs
log.debug("Font %d CharStrings: %d.", i, len(cs))
chrset.extend(font.charset)
if newcs.charStringsAreIndexed:
for i, name in enumerate(cs.charStrings, start=len(newcs)):
newcs.charStrings[name] = i
newcs.charStringsIndex.items.append(None)
for name in cs.charStrings:
if widthsDiffer:
c = cs[name]
defaultWidthXToken = object()
extractor = T2WidthExtractor([], [], nominalWidthX, defaultWidthXToken)
extractor.execute(c)
width = extractor.width
if width is not defaultWidthXToken:
# The following will be wrong if the width is added
# by a subroutine. Ouch!
c.program.pop(0)
else:
width = defaultWidthX
if width != newDefaultWidthX:
c.program.insert(0, width - newNominalWidthX)
newcs[name] = cs[name]
newfont.charset = chrset
newfont.numGlyphs = len(chrset)
newfont.strings.strings = glyphOrderStrings + storedNamesStrings
return newcff
@add_method(ttLib.getTableClass("cmap"))
def merge(self, m, tables):
# TODO Handle format=14.
if not hasattr(m, "cmap"):
computeMegaCmap(m, tables)
cmap = m.cmap
cmapBmpOnly = {uni: gid for uni, gid in cmap.items() if uni <= 0xFFFF}
self.tables = []
module = ttLib.getTableModule("cmap")
if len(cmapBmpOnly) != len(cmap):
# format-12 required.
cmapTable = module.cmap_classes[12](12)
cmapTable.platformID = 3
cmapTable.platEncID = 10
cmapTable.language = 0
cmapTable.cmap = cmap
self.tables.append(cmapTable)
# always create format-4
cmapTable = module.cmap_classes[4](4)
cmapTable.platformID = 3
cmapTable.platEncID = 1
cmapTable.language = 0
cmapTable.cmap = cmapBmpOnly
# ordered by platform then encoding
self.tables.insert(0, cmapTable)
self.tableVersion = 0
self.numSubTables = len(self.tables)
return self

View File

@ -0,0 +1,78 @@
# Copyright 2021 Behdad Esfahbod. All Rights Reserved.
def is_Default_Ignorable(u):
# http://www.unicode.org/reports/tr44/#Default_Ignorable_Code_Point
#
# TODO Move me to unicodedata module and autogenerate.
#
# Unicode 14.0:
# $ grep '; Default_Ignorable_Code_Point ' DerivedCoreProperties.txt | sed 's/;.*#/#/'
# 00AD # Cf SOFT HYPHEN
# 034F # Mn COMBINING GRAPHEME JOINER
# 061C # Cf ARABIC LETTER MARK
# 115F..1160 # Lo [2] HANGUL CHOSEONG FILLER..HANGUL JUNGSEONG FILLER
# 17B4..17B5 # Mn [2] KHMER VOWEL INHERENT AQ..KHMER VOWEL INHERENT AA
# 180B..180D # Mn [3] MONGOLIAN FREE VARIATION SELECTOR ONE..MONGOLIAN FREE VARIATION SELECTOR THREE
# 180E # Cf MONGOLIAN VOWEL SEPARATOR
# 180F # Mn MONGOLIAN FREE VARIATION SELECTOR FOUR
# 200B..200F # Cf [5] ZERO WIDTH SPACE..RIGHT-TO-LEFT MARK
# 202A..202E # Cf [5] LEFT-TO-RIGHT EMBEDDING..RIGHT-TO-LEFT OVERRIDE
# 2060..2064 # Cf [5] WORD JOINER..INVISIBLE PLUS
# 2065 # Cn <reserved-2065>
# 2066..206F # Cf [10] LEFT-TO-RIGHT ISOLATE..NOMINAL DIGIT SHAPES
# 3164 # Lo HANGUL FILLER
# FE00..FE0F # Mn [16] VARIATION SELECTOR-1..VARIATION SELECTOR-16
# FEFF # Cf ZERO WIDTH NO-BREAK SPACE
# FFA0 # Lo HALFWIDTH HANGUL FILLER
# FFF0..FFF8 # Cn [9] <reserved-FFF0>..<reserved-FFF8>
# 1BCA0..1BCA3 # Cf [4] SHORTHAND FORMAT LETTER OVERLAP..SHORTHAND FORMAT UP STEP
# 1D173..1D17A # Cf [8] MUSICAL SYMBOL BEGIN BEAM..MUSICAL SYMBOL END PHRASE
# E0000 # Cn <reserved-E0000>
# E0001 # Cf LANGUAGE TAG
# E0002..E001F # Cn [30] <reserved-E0002>..<reserved-E001F>
# E0020..E007F # Cf [96] TAG SPACE..CANCEL TAG
# E0080..E00FF # Cn [128] <reserved-E0080>..<reserved-E00FF>
# E0100..E01EF # Mn [240] VARIATION SELECTOR-17..VARIATION SELECTOR-256
# E01F0..E0FFF # Cn [3600] <reserved-E01F0>..<reserved-E0FFF>
return (
u == 0x00AD
or u == 0x034F # Cf SOFT HYPHEN
or u == 0x061C # Mn COMBINING GRAPHEME JOINER
or 0x115F <= u <= 0x1160 # Cf ARABIC LETTER MARK
or 0x17B4 # Lo [2] HANGUL CHOSEONG FILLER..HANGUL JUNGSEONG FILLER
<= u
<= 0x17B5
or 0x180B # Mn [2] KHMER VOWEL INHERENT AQ..KHMER VOWEL INHERENT AA
<= u
<= 0x180D
or u # Mn [3] MONGOLIAN FREE VARIATION SELECTOR ONE..MONGOLIAN FREE VARIATION SELECTOR THREE
== 0x180E
or u == 0x180F # Cf MONGOLIAN VOWEL SEPARATOR
or 0x200B <= u <= 0x200F # Mn MONGOLIAN FREE VARIATION SELECTOR FOUR
or 0x202A <= u <= 0x202E # Cf [5] ZERO WIDTH SPACE..RIGHT-TO-LEFT MARK
or 0x2060 # Cf [5] LEFT-TO-RIGHT EMBEDDING..RIGHT-TO-LEFT OVERRIDE
<= u
<= 0x2064
or u == 0x2065 # Cf [5] WORD JOINER..INVISIBLE PLUS
or 0x2066 <= u <= 0x206F # Cn <reserved-2065>
or u == 0x3164 # Cf [10] LEFT-TO-RIGHT ISOLATE..NOMINAL DIGIT SHAPES
or 0xFE00 <= u <= 0xFE0F # Lo HANGUL FILLER
or u == 0xFEFF # Mn [16] VARIATION SELECTOR-1..VARIATION SELECTOR-16
or u == 0xFFA0 # Cf ZERO WIDTH NO-BREAK SPACE
or 0xFFF0 <= u <= 0xFFF8 # Lo HALFWIDTH HANGUL FILLER
or 0x1BCA0 <= u <= 0x1BCA3 # Cn [9] <reserved-FFF0>..<reserved-FFF8>
or 0x1D173 # Cf [4] SHORTHAND FORMAT LETTER OVERLAP..SHORTHAND FORMAT UP STEP
<= u
<= 0x1D17A
or u == 0xE0000 # Cf [8] MUSICAL SYMBOL BEGIN BEAM..MUSICAL SYMBOL END PHRASE
or u == 0xE0001 # Cn <reserved-E0000>
or 0xE0002 <= u <= 0xE001F # Cf LANGUAGE TAG
or 0xE0020 <= u <= 0xE007F # Cn [30] <reserved-E0002>..<reserved-E001F>
or 0xE0080 <= u <= 0xE00FF # Cf [96] TAG SPACE..CANCEL TAG
or 0xE0100 <= u <= 0xE01EF # Cn [128] <reserved-E0080>..<reserved-E00FF>
or 0xE01F0 # Mn [240] VARIATION SELECTOR-17..VARIATION SELECTOR-256
<= u
<= 0xE0FFF
or False # Cn [3600] <reserved-E01F0>..<reserved-E0FFF>
)

View File

@ -0,0 +1,143 @@
# Copyright 2013 Google, Inc. All Rights Reserved.
#
# Google Author(s): Behdad Esfahbod, Roozbeh Pournader
from fontTools.misc.timeTools import timestampNow
from fontTools.ttLib.tables.DefaultTable import DefaultTable
from functools import reduce
import operator
import logging
log = logging.getLogger("fontTools.merge")
# General utility functions for merging values from different fonts
def equal(lst):
lst = list(lst)
t = iter(lst)
first = next(t)
assert all(item == first for item in t), "Expected all items to be equal: %s" % lst
return first
def first(lst):
return next(iter(lst))
def recalculate(lst):
return NotImplemented
def current_time(lst):
return timestampNow()
def bitwise_and(lst):
return reduce(operator.and_, lst)
def bitwise_or(lst):
return reduce(operator.or_, lst)
def avg_int(lst):
lst = list(lst)
return sum(lst) // len(lst)
def onlyExisting(func):
"""Returns a filter func that when called with a list,
only calls func on the non-NotImplemented items of the list,
and only so if there's at least one item remaining.
Otherwise returns NotImplemented."""
def wrapper(lst):
items = [item for item in lst if item is not NotImplemented]
return func(items) if items else NotImplemented
return wrapper
def sumLists(lst):
l = []
for item in lst:
l.extend(item)
return l
def sumDicts(lst):
d = {}
for item in lst:
d.update(item)
return d
def mergeBits(bitmap):
def wrapper(lst):
lst = list(lst)
returnValue = 0
for bitNumber in range(bitmap["size"]):
try:
mergeLogic = bitmap[bitNumber]
except KeyError:
try:
mergeLogic = bitmap["*"]
except KeyError:
raise Exception("Don't know how to merge bit %s" % bitNumber)
shiftedBit = 1 << bitNumber
mergedValue = mergeLogic(bool(item & shiftedBit) for item in lst)
returnValue |= mergedValue << bitNumber
return returnValue
return wrapper
class AttendanceRecordingIdentityDict(object):
"""A dictionary-like object that records indices of items actually accessed
from a list."""
def __init__(self, lst):
self.l = lst
self.d = {id(v): i for i, v in enumerate(lst)}
self.s = set()
def __getitem__(self, v):
self.s.add(self.d[id(v)])
return v
class GregariousIdentityDict(object):
"""A dictionary-like object that welcomes guests without reservations and
adds them to the end of the guest list."""
def __init__(self, lst):
self.l = lst
self.s = set(id(v) for v in lst)
def __getitem__(self, v):
if id(v) not in self.s:
self.s.add(id(v))
self.l.append(v)
return v
class NonhashableDict(object):
"""A dictionary-like object mapping objects to values."""
def __init__(self, keys, values=None):
if values is None:
self.d = {id(v): i for i, v in enumerate(keys)}
else:
self.d = {id(k): v for k, v in zip(keys, values)}
def __getitem__(self, k):
return self.d[id(k)]
def __setitem__(self, k, v):
self.d[id(k)] = v
def __delitem__(self, k):
del self.d[id(k)]

View File

@ -0,0 +1 @@
"""Empty __init__.py file to signal Python this directory is a package."""

View File

@ -0,0 +1,424 @@
"""Routines for calculating bounding boxes, point in rectangle calculations and
so on.
"""
from fontTools.misc.roundTools import otRound
from fontTools.misc.vector import Vector as _Vector
import math
import warnings
def calcBounds(array):
"""Calculate the bounding rectangle of a 2D points array.
Args:
array: A sequence of 2D tuples.
Returns:
A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``.
"""
if not array:
return 0, 0, 0, 0
xs = [x for x, y in array]
ys = [y for x, y in array]
return min(xs), min(ys), max(xs), max(ys)
def calcIntBounds(array, round=otRound):
"""Calculate the integer bounding rectangle of a 2D points array.
Values are rounded to closest integer towards ``+Infinity`` using the
:func:`fontTools.misc.fixedTools.otRound` function by default, unless
an optional ``round`` function is passed.
Args:
array: A sequence of 2D tuples.
round: A rounding function of type ``f(x: float) -> int``.
Returns:
A four-item tuple of integers representing the bounding rectangle:
``(xMin, yMin, xMax, yMax)``.
"""
return tuple(round(v) for v in calcBounds(array))
def updateBounds(bounds, p, min=min, max=max):
"""Add a point to a bounding rectangle.
Args:
bounds: A bounding rectangle expressed as a tuple
``(xMin, yMin, xMax, yMax), or None``.
p: A 2D tuple representing a point.
min,max: functions to compute the minimum and maximum.
Returns:
The updated bounding rectangle ``(xMin, yMin, xMax, yMax)``.
"""
(x, y) = p
if bounds is None:
return x, y, x, y
xMin, yMin, xMax, yMax = bounds
return min(xMin, x), min(yMin, y), max(xMax, x), max(yMax, y)
def pointInRect(p, rect):
"""Test if a point is inside a bounding rectangle.
Args:
p: A 2D tuple representing a point.
rect: A bounding rectangle expressed as a tuple
``(xMin, yMin, xMax, yMax)``.
Returns:
``True`` if the point is inside the rectangle, ``False`` otherwise.
"""
(x, y) = p
xMin, yMin, xMax, yMax = rect
return (xMin <= x <= xMax) and (yMin <= y <= yMax)
def pointsInRect(array, rect):
"""Determine which points are inside a bounding rectangle.
Args:
array: A sequence of 2D tuples.
rect: A bounding rectangle expressed as a tuple
``(xMin, yMin, xMax, yMax)``.
Returns:
A list containing the points inside the rectangle.
"""
if len(array) < 1:
return []
xMin, yMin, xMax, yMax = rect
return [(xMin <= x <= xMax) and (yMin <= y <= yMax) for x, y in array]
def vectorLength(vector):
"""Calculate the length of the given vector.
Args:
vector: A 2D tuple.
Returns:
The Euclidean length of the vector.
"""
x, y = vector
return math.sqrt(x**2 + y**2)
def asInt16(array):
"""Round a list of floats to 16-bit signed integers.
Args:
array: List of float values.
Returns:
A list of rounded integers.
"""
return [int(math.floor(i + 0.5)) for i in array]
def normRect(rect):
"""Normalize a bounding box rectangle.
This function "turns the rectangle the right way up", so that the following
holds::
xMin <= xMax and yMin <= yMax
Args:
rect: A bounding rectangle expressed as a tuple
``(xMin, yMin, xMax, yMax)``.
Returns:
A normalized bounding rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
return min(xMin, xMax), min(yMin, yMax), max(xMin, xMax), max(yMin, yMax)
def scaleRect(rect, x, y):
"""Scale a bounding box rectangle.
Args:
rect: A bounding rectangle expressed as a tuple
``(xMin, yMin, xMax, yMax)``.
x: Factor to scale the rectangle along the X axis.
Y: Factor to scale the rectangle along the Y axis.
Returns:
A scaled bounding rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
return xMin * x, yMin * y, xMax * x, yMax * y
def offsetRect(rect, dx, dy):
"""Offset a bounding box rectangle.
Args:
rect: A bounding rectangle expressed as a tuple
``(xMin, yMin, xMax, yMax)``.
dx: Amount to offset the rectangle along the X axis.
dY: Amount to offset the rectangle along the Y axis.
Returns:
An offset bounding rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
return xMin + dx, yMin + dy, xMax + dx, yMax + dy
def insetRect(rect, dx, dy):
"""Inset a bounding box rectangle on all sides.
Args:
rect: A bounding rectangle expressed as a tuple
``(xMin, yMin, xMax, yMax)``.
dx: Amount to inset the rectangle along the X axis.
dY: Amount to inset the rectangle along the Y axis.
Returns:
An inset bounding rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
return xMin + dx, yMin + dy, xMax - dx, yMax - dy
def sectRect(rect1, rect2):
"""Test for rectangle-rectangle intersection.
Args:
rect1: First bounding rectangle, expressed as tuples
``(xMin, yMin, xMax, yMax)``.
rect2: Second bounding rectangle.
Returns:
A boolean and a rectangle.
If the input rectangles intersect, returns ``True`` and the intersecting
rectangle. Returns ``False`` and ``(0, 0, 0, 0)`` if the input
rectangles don't intersect.
"""
(xMin1, yMin1, xMax1, yMax1) = rect1
(xMin2, yMin2, xMax2, yMax2) = rect2
xMin, yMin, xMax, yMax = (
max(xMin1, xMin2),
max(yMin1, yMin2),
min(xMax1, xMax2),
min(yMax1, yMax2),
)
if xMin >= xMax or yMin >= yMax:
return False, (0, 0, 0, 0)
return True, (xMin, yMin, xMax, yMax)
def unionRect(rect1, rect2):
"""Determine union of bounding rectangles.
Args:
rect1: First bounding rectangle, expressed as tuples
``(xMin, yMin, xMax, yMax)``.
rect2: Second bounding rectangle.
Returns:
The smallest rectangle in which both input rectangles are fully
enclosed.
"""
(xMin1, yMin1, xMax1, yMax1) = rect1
(xMin2, yMin2, xMax2, yMax2) = rect2
xMin, yMin, xMax, yMax = (
min(xMin1, xMin2),
min(yMin1, yMin2),
max(xMax1, xMax2),
max(yMax1, yMax2),
)
return (xMin, yMin, xMax, yMax)
def rectCenter(rect):
"""Determine rectangle center.
Args:
rect: Bounding rectangle, expressed as tuples
``(xMin, yMin, xMax, yMax)``.
Returns:
A 2D tuple representing the point at the center of the rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
return (xMin + xMax) / 2, (yMin + yMax) / 2
def rectArea(rect):
"""Determine rectangle area.
Args:
rect: Bounding rectangle, expressed as tuples
``(xMin, yMin, xMax, yMax)``.
Returns:
The area of the rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
return (yMax - yMin) * (xMax - xMin)
def intRect(rect):
"""Round a rectangle to integer values.
Guarantees that the resulting rectangle is NOT smaller than the original.
Args:
rect: Bounding rectangle, expressed as tuples
``(xMin, yMin, xMax, yMax)``.
Returns:
A rounded bounding rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
xMin = int(math.floor(xMin))
yMin = int(math.floor(yMin))
xMax = int(math.ceil(xMax))
yMax = int(math.ceil(yMax))
return (xMin, yMin, xMax, yMax)
def quantizeRect(rect, factor=1):
"""
>>> bounds = (72.3, -218.4, 1201.3, 919.1)
>>> quantizeRect(bounds)
(72, -219, 1202, 920)
>>> quantizeRect(bounds, factor=10)
(70, -220, 1210, 920)
>>> quantizeRect(bounds, factor=100)
(0, -300, 1300, 1000)
"""
if factor < 1:
raise ValueError(f"Expected quantization factor >= 1, found: {factor!r}")
xMin, yMin, xMax, yMax = normRect(rect)
return (
int(math.floor(xMin / factor) * factor),
int(math.floor(yMin / factor) * factor),
int(math.ceil(xMax / factor) * factor),
int(math.ceil(yMax / factor) * factor),
)
class Vector(_Vector):
def __init__(self, *args, **kwargs):
warnings.warn(
"fontTools.misc.arrayTools.Vector has been deprecated, please use "
"fontTools.misc.vector.Vector instead.",
DeprecationWarning,
)
def pairwise(iterable, reverse=False):
"""Iterate over current and next items in iterable.
Args:
iterable: An iterable
reverse: If true, iterate in reverse order.
Returns:
A iterable yielding two elements per iteration.
Example:
>>> tuple(pairwise([]))
()
>>> tuple(pairwise([], reverse=True))
()
>>> tuple(pairwise([0]))
((0, 0),)
>>> tuple(pairwise([0], reverse=True))
((0, 0),)
>>> tuple(pairwise([0, 1]))
((0, 1), (1, 0))
>>> tuple(pairwise([0, 1], reverse=True))
((1, 0), (0, 1))
>>> tuple(pairwise([0, 1, 2]))
((0, 1), (1, 2), (2, 0))
>>> tuple(pairwise([0, 1, 2], reverse=True))
((2, 1), (1, 0), (0, 2))
>>> tuple(pairwise(['a', 'b', 'c', 'd']))
(('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'a'))
>>> tuple(pairwise(['a', 'b', 'c', 'd'], reverse=True))
(('d', 'c'), ('c', 'b'), ('b', 'a'), ('a', 'd'))
"""
if not iterable:
return
if reverse:
it = reversed(iterable)
else:
it = iter(iterable)
first = next(it, None)
a = first
for b in it:
yield (a, b)
a = b
yield (a, first)
def _test():
"""
>>> import math
>>> calcBounds([])
(0, 0, 0, 0)
>>> calcBounds([(0, 40), (0, 100), (50, 50), (80, 10)])
(0, 10, 80, 100)
>>> updateBounds((0, 0, 0, 0), (100, 100))
(0, 0, 100, 100)
>>> pointInRect((50, 50), (0, 0, 100, 100))
True
>>> pointInRect((0, 0), (0, 0, 100, 100))
True
>>> pointInRect((100, 100), (0, 0, 100, 100))
True
>>> not pointInRect((101, 100), (0, 0, 100, 100))
True
>>> list(pointsInRect([(50, 50), (0, 0), (100, 100), (101, 100)], (0, 0, 100, 100)))
[True, True, True, False]
>>> vectorLength((3, 4))
5.0
>>> vectorLength((1, 1)) == math.sqrt(2)
True
>>> list(asInt16([0, 0.1, 0.5, 0.9]))
[0, 0, 1, 1]
>>> normRect((0, 10, 100, 200))
(0, 10, 100, 200)
>>> normRect((100, 200, 0, 10))
(0, 10, 100, 200)
>>> scaleRect((10, 20, 50, 150), 1.5, 2)
(15.0, 40, 75.0, 300)
>>> offsetRect((10, 20, 30, 40), 5, 6)
(15, 26, 35, 46)
>>> insetRect((10, 20, 50, 60), 5, 10)
(15, 30, 45, 50)
>>> insetRect((10, 20, 50, 60), -5, -10)
(5, 10, 55, 70)
>>> intersects, rect = sectRect((0, 10, 20, 30), (0, 40, 20, 50))
>>> not intersects
True
>>> intersects, rect = sectRect((0, 10, 20, 30), (5, 20, 35, 50))
>>> intersects
1
>>> rect
(5, 20, 20, 30)
>>> unionRect((0, 10, 20, 30), (0, 40, 20, 50))
(0, 10, 20, 50)
>>> rectCenter((0, 0, 100, 200))
(50.0, 100.0)
>>> rectCenter((0, 0, 100, 199.0))
(50.0, 99.5)
>>> intRect((0.9, 2.9, 3.1, 4.1))
(0, 2, 4, 5)
"""
if __name__ == "__main__":
import sys
import doctest
sys.exit(doctest.testmod().failed)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,170 @@
""" fontTools.misc.classifyTools.py -- tools for classifying things.
"""
class Classifier(object):
"""
Main Classifier object, used to classify things into similar sets.
"""
def __init__(self, sort=True):
self._things = set() # set of all things known so far
self._sets = [] # list of class sets produced so far
self._mapping = {} # map from things to their class set
self._dirty = False
self._sort = sort
def add(self, set_of_things):
"""
Add a set to the classifier. Any iterable is accepted.
"""
if not set_of_things:
return
self._dirty = True
things, sets, mapping = self._things, self._sets, self._mapping
s = set(set_of_things)
intersection = s.intersection(things) # existing things
s.difference_update(intersection) # new things
difference = s
del s
# Add new class for new things
if difference:
things.update(difference)
sets.append(difference)
for thing in difference:
mapping[thing] = difference
del difference
while intersection:
# Take one item and process the old class it belongs to
old_class = mapping[next(iter(intersection))]
old_class_intersection = old_class.intersection(intersection)
# Update old class to remove items from new set
old_class.difference_update(old_class_intersection)
# Remove processed items from todo list
intersection.difference_update(old_class_intersection)
# Add new class for the intersection with old class
sets.append(old_class_intersection)
for thing in old_class_intersection:
mapping[thing] = old_class_intersection
del old_class_intersection
def update(self, list_of_sets):
"""
Add a a list of sets to the classifier. Any iterable of iterables is accepted.
"""
for s in list_of_sets:
self.add(s)
def _process(self):
if not self._dirty:
return
# Do any deferred processing
sets = self._sets
self._sets = [s for s in sets if s]
if self._sort:
self._sets = sorted(self._sets, key=lambda s: (-len(s), sorted(s)))
self._dirty = False
# Output methods
def getThings(self):
"""Returns the set of all things known so far.
The return value belongs to the Classifier object and should NOT
be modified while the classifier is still in use.
"""
self._process()
return self._things
def getMapping(self):
"""Returns the mapping from things to their class set.
The return value belongs to the Classifier object and should NOT
be modified while the classifier is still in use.
"""
self._process()
return self._mapping
def getClasses(self):
"""Returns the list of class sets.
The return value belongs to the Classifier object and should NOT
be modified while the classifier is still in use.
"""
self._process()
return self._sets
def classify(list_of_sets, sort=True):
"""
Takes a iterable of iterables (list of sets from here on; but any
iterable works.), and returns the smallest list of sets such that
each set, is either a subset, or is disjoint from, each of the input
sets.
In other words, this function classifies all the things present in
any of the input sets, into similar classes, based on which sets
things are a member of.
If sort=True, return class sets are sorted by decreasing size and
their natural sort order within each class size. Otherwise, class
sets are returned in the order that they were identified, which is
generally not significant.
>>> classify([]) == ([], {})
True
>>> classify([[]]) == ([], {})
True
>>> classify([[], []]) == ([], {})
True
>>> classify([[1]]) == ([{1}], {1: {1}})
True
>>> classify([[1,2]]) == ([{1, 2}], {1: {1, 2}, 2: {1, 2}})
True
>>> classify([[1],[2]]) == ([{1}, {2}], {1: {1}, 2: {2}})
True
>>> classify([[1,2],[2]]) == ([{1}, {2}], {1: {1}, 2: {2}})
True
>>> classify([[1,2],[2,4]]) == ([{1}, {2}, {4}], {1: {1}, 2: {2}, 4: {4}})
True
>>> classify([[1,2],[2,4,5]]) == (
... [{4, 5}, {1}, {2}], {1: {1}, 2: {2}, 4: {4, 5}, 5: {4, 5}})
True
>>> classify([[1,2],[2,4,5]], sort=False) == (
... [{1}, {4, 5}, {2}], {1: {1}, 2: {2}, 4: {4, 5}, 5: {4, 5}})
True
>>> classify([[1,2,9],[2,4,5]], sort=False) == (
... [{1, 9}, {4, 5}, {2}], {1: {1, 9}, 2: {2}, 4: {4, 5}, 5: {4, 5},
... 9: {1, 9}})
True
>>> classify([[1,2,9,15],[2,4,5]], sort=False) == (
... [{1, 9, 15}, {4, 5}, {2}], {1: {1, 9, 15}, 2: {2}, 4: {4, 5},
... 5: {4, 5}, 9: {1, 9, 15}, 15: {1, 9, 15}})
True
>>> classes, mapping = classify([[1,2,9,15],[2,4,5],[15,5]], sort=False)
>>> set([frozenset(c) for c in classes]) == set(
... [frozenset(s) for s in ({1, 9}, {4}, {2}, {5}, {15})])
True
>>> mapping == {1: {1, 9}, 2: {2}, 4: {4}, 5: {5}, 9: {1, 9}, 15: {15}}
True
"""
classifier = Classifier(sort=sort)
classifier.update(list_of_sets)
return classifier.getClasses(), classifier.getMapping()
if __name__ == "__main__":
import sys, doctest
sys.exit(doctest.testmod(optionflags=doctest.ELLIPSIS).failed)

View File

@ -0,0 +1,53 @@
"""Collection of utilities for command-line interfaces and console scripts."""
import os
import re
numberAddedRE = re.compile(r"#\d+$")
def makeOutputFileName(
input, outputDir=None, extension=None, overWrite=False, suffix=""
):
"""Generates a suitable file name for writing output.
Often tools will want to take a file, do some kind of transformation to it,
and write it out again. This function determines an appropriate name for the
output file, through one or more of the following steps:
- changing the output directory
- appending suffix before file extension
- replacing the file extension
- suffixing the filename with a number (``#1``, ``#2``, etc.) to avoid
overwriting an existing file.
Args:
input: Name of input file.
outputDir: Optionally, a new directory to write the file into.
suffix: Optionally, a string suffix is appended to file name before
the extension.
extension: Optionally, a replacement for the current file extension.
overWrite: Overwriting an existing file is permitted if true; if false
and the proposed filename exists, a new name will be generated by
adding an appropriate number suffix.
Returns:
str: Suitable output filename
"""
dirName, fileName = os.path.split(input)
fileName, ext = os.path.splitext(fileName)
if outputDir:
dirName = outputDir
fileName = numberAddedRE.split(fileName)[0]
if extension is None:
extension = os.path.splitext(input)[1]
output = os.path.join(dirName, fileName + suffix + extension)
n = 1
if not overWrite:
while os.path.exists(output):
output = os.path.join(
dirName, fileName + suffix + "#" + repr(n) + extension
)
n += 1
return output

View File

@ -0,0 +1,349 @@
"""
Code of the config system; not related to fontTools or fonts in particular.
The options that are specific to fontTools are in :mod:`fontTools.config`.
To create your own config system, you need to create an instance of
:class:`Options`, and a subclass of :class:`AbstractConfig` with its
``options`` class variable set to your instance of Options.
"""
from __future__ import annotations
import logging
from dataclasses import dataclass
from typing import (
Any,
Callable,
ClassVar,
Dict,
Iterable,
Mapping,
MutableMapping,
Optional,
Set,
Union,
)
log = logging.getLogger(__name__)
__all__ = [
"AbstractConfig",
"ConfigAlreadyRegisteredError",
"ConfigError",
"ConfigUnknownOptionError",
"ConfigValueParsingError",
"ConfigValueValidationError",
"Option",
"Options",
]
class ConfigError(Exception):
"""Base exception for the config module."""
class ConfigAlreadyRegisteredError(ConfigError):
"""Raised when a module tries to register a configuration option that
already exists.
Should not be raised too much really, only when developing new fontTools
modules.
"""
def __init__(self, name):
super().__init__(f"Config option {name} is already registered.")
class ConfigValueParsingError(ConfigError):
"""Raised when a configuration value cannot be parsed."""
def __init__(self, name, value):
super().__init__(
f"Config option {name}: value cannot be parsed (given {repr(value)})"
)
class ConfigValueValidationError(ConfigError):
"""Raised when a configuration value cannot be validated."""
def __init__(self, name, value):
super().__init__(
f"Config option {name}: value is invalid (given {repr(value)})"
)
class ConfigUnknownOptionError(ConfigError):
"""Raised when a configuration option is unknown."""
def __init__(self, option_or_name):
name = (
f"'{option_or_name.name}' (id={id(option_or_name)})>"
if isinstance(option_or_name, Option)
else f"'{option_or_name}'"
)
super().__init__(f"Config option {name} is unknown")
# eq=False because Options are unique, not fungible objects
@dataclass(frozen=True, eq=False)
class Option:
name: str
"""Unique name identifying the option (e.g. package.module:MY_OPTION)."""
help: str
"""Help text for this option."""
default: Any
"""Default value for this option."""
parse: Callable[[str], Any]
"""Turn input (e.g. string) into proper type. Only when reading from file."""
validate: Optional[Callable[[Any], bool]] = None
"""Return true if the given value is an acceptable value."""
@staticmethod
def parse_optional_bool(v: str) -> Optional[bool]:
s = str(v).lower()
if s in {"0", "no", "false"}:
return False
if s in {"1", "yes", "true"}:
return True
if s in {"auto", "none"}:
return None
raise ValueError("invalid optional bool: {v!r}")
@staticmethod
def validate_optional_bool(v: Any) -> bool:
return v is None or isinstance(v, bool)
class Options(Mapping):
"""Registry of available options for a given config system.
Define new options using the :meth:`register()` method.
Access existing options using the Mapping interface.
"""
__options: Dict[str, Option]
def __init__(self, other: "Options" = None) -> None:
self.__options = {}
if other is not None:
for option in other.values():
self.register_option(option)
def register(
self,
name: str,
help: str,
default: Any,
parse: Callable[[str], Any],
validate: Optional[Callable[[Any], bool]] = None,
) -> Option:
"""Create and register a new option."""
return self.register_option(Option(name, help, default, parse, validate))
def register_option(self, option: Option) -> Option:
"""Register a new option."""
name = option.name
if name in self.__options:
raise ConfigAlreadyRegisteredError(name)
self.__options[name] = option
return option
def is_registered(self, option: Option) -> bool:
"""Return True if the same option object is already registered."""
return self.__options.get(option.name) is option
def __getitem__(self, key: str) -> Option:
return self.__options.__getitem__(key)
def __iter__(self) -> Iterator[str]:
return self.__options.__iter__()
def __len__(self) -> int:
return self.__options.__len__()
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}({{\n"
+ "".join(
f" {k!r}: Option(default={v.default!r}, ...),\n"
for k, v in self.__options.items()
)
+ "})"
)
_USE_GLOBAL_DEFAULT = object()
class AbstractConfig(MutableMapping):
"""
Create a set of config values, optionally pre-filled with values from
the given dictionary or pre-existing config object.
The class implements the MutableMapping protocol keyed by option name (`str`).
For convenience its methods accept either Option or str as the key parameter.
.. seealso:: :meth:`set()`
This config class is abstract because it needs its ``options`` class
var to be set to an instance of :class:`Options` before it can be
instanciated and used.
.. code:: python
class MyConfig(AbstractConfig):
options = Options()
MyConfig.register_option( "test:option_name", "This is an option", 0, int, lambda v: isinstance(v, int))
cfg = MyConfig({"test:option_name": 10})
"""
options: ClassVar[Options]
@classmethod
def register_option(
cls,
name: str,
help: str,
default: Any,
parse: Callable[[str], Any],
validate: Optional[Callable[[Any], bool]] = None,
) -> Option:
"""Register an available option in this config system."""
return cls.options.register(
name, help=help, default=default, parse=parse, validate=validate
)
_values: Dict[str, Any]
def __init__(
self,
values: Union[AbstractConfig, Dict[Union[Option, str], Any]] = {},
parse_values: bool = False,
skip_unknown: bool = False,
):
self._values = {}
values_dict = values._values if isinstance(values, AbstractConfig) else values
for name, value in values_dict.items():
self.set(name, value, parse_values, skip_unknown)
def _resolve_option(self, option_or_name: Union[Option, str]) -> Option:
if isinstance(option_or_name, Option):
option = option_or_name
if not self.options.is_registered(option):
raise ConfigUnknownOptionError(option)
return option
elif isinstance(option_or_name, str):
name = option_or_name
try:
return self.options[name]
except KeyError:
raise ConfigUnknownOptionError(name)
else:
raise TypeError(
"expected Option or str, found "
f"{type(option_or_name).__name__}: {option_or_name!r}"
)
def set(
self,
option_or_name: Union[Option, str],
value: Any,
parse_values: bool = False,
skip_unknown: bool = False,
):
"""Set the value of an option.
Args:
* `option_or_name`: an `Option` object or its name (`str`).
* `value`: the value to be assigned to given option.
* `parse_values`: parse the configuration value from a string into
its proper type, as per its `Option` object. The default
behavior is to raise `ConfigValueValidationError` when the value
is not of the right type. Useful when reading options from a
file type that doesn't support as many types as Python.
* `skip_unknown`: skip unknown configuration options. The default
behaviour is to raise `ConfigUnknownOptionError`. Useful when
reading options from a configuration file that has extra entries
(e.g. for a later version of fontTools)
"""
try:
option = self._resolve_option(option_or_name)
except ConfigUnknownOptionError as e:
if skip_unknown:
log.debug(str(e))
return
raise
# Can be useful if the values come from a source that doesn't have
# strict typing (.ini file? Terminal input?)
if parse_values:
try:
value = option.parse(value)
except Exception as e:
raise ConfigValueParsingError(option.name, value) from e
if option.validate is not None and not option.validate(value):
raise ConfigValueValidationError(option.name, value)
self._values[option.name] = value
def get(
self, option_or_name: Union[Option, str], default: Any = _USE_GLOBAL_DEFAULT
) -> Any:
"""
Get the value of an option. The value which is returned is the first
provided among:
1. a user-provided value in the options's ``self._values`` dict
2. a caller-provided default value to this method call
3. the global default for the option provided in ``fontTools.config``
This is to provide the ability to migrate progressively from config
options passed as arguments to fontTools APIs to config options read
from the current TTFont, e.g.
.. code:: python
def fontToolsAPI(font, some_option):
value = font.cfg.get("someLib.module:SOME_OPTION", some_option)
# use value
That way, the function will work the same for users of the API that
still pass the option to the function call, but will favour the new
config mechanism if the given font specifies a value for that option.
"""
option = self._resolve_option(option_or_name)
if option.name in self._values:
return self._values[option.name]
if default is not _USE_GLOBAL_DEFAULT:
return default
return option.default
def copy(self):
return self.__class__(self._values)
def __getitem__(self, option_or_name: Union[Option, str]) -> Any:
return self.get(option_or_name)
def __setitem__(self, option_or_name: Union[Option, str], value: Any) -> None:
return self.set(option_or_name, value)
def __delitem__(self, option_or_name: Union[Option, str]) -> None:
option = self._resolve_option(option_or_name)
del self._values[option.name]
def __iter__(self) -> Iterable[str]:
return self._values.__iter__()
def __len__(self) -> int:
return len(self._values)
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self._values)})"

View File

@ -0,0 +1,27 @@
""" Exports a no-op 'cython' namespace similar to
https://github.com/cython/cython/blob/master/Cython/Shadow.py
This allows to optionally compile @cython decorated functions
(when cython is available at built time), or run the same code
as pure-python, without runtime dependency on cython module.
We only define the symbols that we use. E.g. see fontTools.cu2qu
"""
from types import SimpleNamespace
def _empty_decorator(x):
return x
compiled = False
for name in ("double", "complex", "int"):
globals()[name] = None
for name in ("cfunc", "inline"):
globals()[name] = _empty_decorator
locals = lambda **_: _empty_decorator
returns = lambda _: _empty_decorator

View File

@ -0,0 +1,83 @@
"""Misc dict tools."""
__all__ = ["hashdict"]
# https://stackoverflow.com/questions/1151658/python-hashable-dicts
class hashdict(dict):
"""
hashable dict implementation, suitable for use as a key into
other dicts.
>>> h1 = hashdict({"apples": 1, "bananas":2})
>>> h2 = hashdict({"bananas": 3, "mangoes": 5})
>>> h1+h2
hashdict(apples=1, bananas=3, mangoes=5)
>>> d1 = {}
>>> d1[h1] = "salad"
>>> d1[h1]
'salad'
>>> d1[h2]
Traceback (most recent call last):
...
KeyError: hashdict(bananas=3, mangoes=5)
based on answers from
http://stackoverflow.com/questions/1151658/python-hashable-dicts
"""
def __key(self):
return tuple(sorted(self.items()))
def __repr__(self):
return "{0}({1})".format(
self.__class__.__name__,
", ".join("{0}={1}".format(str(i[0]), repr(i[1])) for i in self.__key()),
)
def __hash__(self):
return hash(self.__key())
def __setitem__(self, key, value):
raise TypeError(
"{0} does not support item assignment".format(self.__class__.__name__)
)
def __delitem__(self, key):
raise TypeError(
"{0} does not support item assignment".format(self.__class__.__name__)
)
def clear(self):
raise TypeError(
"{0} does not support item assignment".format(self.__class__.__name__)
)
def pop(self, *args, **kwargs):
raise TypeError(
"{0} does not support item assignment".format(self.__class__.__name__)
)
def popitem(self, *args, **kwargs):
raise TypeError(
"{0} does not support item assignment".format(self.__class__.__name__)
)
def setdefault(self, *args, **kwargs):
raise TypeError(
"{0} does not support item assignment".format(self.__class__.__name__)
)
def update(self, *args, **kwargs):
raise TypeError(
"{0} does not support item assignment".format(self.__class__.__name__)
)
# update is not ok because it mutates the object
# __add__ is ok because it creates a new object
# while the new object is under construction, it's ok to mutate it
def __add__(self, right):
result = hashdict(self)
dict.update(result, right)
return result

View File

@ -0,0 +1,119 @@
"""
PostScript Type 1 fonts make use of two types of encryption: charstring
encryption and ``eexec`` encryption. Charstring encryption is used for
the charstrings themselves, while ``eexec`` is used to encrypt larger
sections of the font program, such as the ``Private`` and ``CharStrings``
dictionaries. Despite the different names, the algorithm is the same,
although ``eexec`` encryption uses a fixed initial key R=55665.
The algorithm uses cipher feedback, meaning that the ciphertext is used
to modify the key. Because of this, the routines in this module return
the new key at the end of the operation.
"""
from fontTools.misc.textTools import bytechr, bytesjoin, byteord
def _decryptChar(cipher, R):
cipher = byteord(cipher)
plain = ((cipher ^ (R >> 8))) & 0xFF
R = ((cipher + R) * 52845 + 22719) & 0xFFFF
return bytechr(plain), R
def _encryptChar(plain, R):
plain = byteord(plain)
cipher = ((plain ^ (R >> 8))) & 0xFF
R = ((cipher + R) * 52845 + 22719) & 0xFFFF
return bytechr(cipher), R
def decrypt(cipherstring, R):
r"""
Decrypts a string using the Type 1 encryption algorithm.
Args:
cipherstring: String of ciphertext.
R: Initial key.
Returns:
decryptedStr: Plaintext string.
R: Output key for subsequent decryptions.
Examples::
>>> testStr = b"\0\0asdadads asds\265"
>>> decryptedStr, R = decrypt(testStr, 12321)
>>> decryptedStr == b'0d\nh\x15\xe8\xc4\xb2\x15\x1d\x108\x1a<6\xa1'
True
>>> R == 36142
True
"""
plainList = []
for cipher in cipherstring:
plain, R = _decryptChar(cipher, R)
plainList.append(plain)
plainstring = bytesjoin(plainList)
return plainstring, int(R)
def encrypt(plainstring, R):
r"""
Encrypts a string using the Type 1 encryption algorithm.
Note that the algorithm as described in the Type 1 specification requires the
plaintext to be prefixed with a number of random bytes. (For ``eexec`` the
number of random bytes is set to 4.) This routine does *not* add the random
prefix to its input.
Args:
plainstring: String of plaintext.
R: Initial key.
Returns:
cipherstring: Ciphertext string.
R: Output key for subsequent encryptions.
Examples::
>>> testStr = b"\0\0asdadads asds\265"
>>> decryptedStr, R = decrypt(testStr, 12321)
>>> decryptedStr == b'0d\nh\x15\xe8\xc4\xb2\x15\x1d\x108\x1a<6\xa1'
True
>>> R == 36142
True
>>> testStr = b'0d\nh\x15\xe8\xc4\xb2\x15\x1d\x108\x1a<6\xa1'
>>> encryptedStr, R = encrypt(testStr, 12321)
>>> encryptedStr == b"\0\0asdadads asds\265"
True
>>> R == 36142
True
"""
cipherList = []
for plain in plainstring:
cipher, R = _encryptChar(plain, R)
cipherList.append(cipher)
cipherstring = bytesjoin(cipherList)
return cipherstring, int(R)
def hexString(s):
import binascii
return binascii.hexlify(s)
def deHexString(h):
import binascii
h = bytesjoin(h.split())
return binascii.unhexlify(h)
if __name__ == "__main__":
import sys
import doctest
sys.exit(doctest.testmod().failed)

View File

@ -0,0 +1,72 @@
"""fontTools.misc.encodingTools.py -- tools for working with OpenType encodings.
"""
import fontTools.encodings.codecs
# Map keyed by platformID, then platEncID, then possibly langID
_encodingMap = {
0: { # Unicode
0: "utf_16_be",
1: "utf_16_be",
2: "utf_16_be",
3: "utf_16_be",
4: "utf_16_be",
5: "utf_16_be",
6: "utf_16_be",
},
1: { # Macintosh
# See
# https://github.com/fonttools/fonttools/issues/236
0: { # Macintosh, platEncID==0, keyed by langID
15: "mac_iceland",
17: "mac_turkish",
18: "mac_croatian",
24: "mac_latin2",
25: "mac_latin2",
26: "mac_latin2",
27: "mac_latin2",
28: "mac_latin2",
36: "mac_latin2",
37: "mac_romanian",
38: "mac_latin2",
39: "mac_latin2",
40: "mac_latin2",
Ellipsis: "mac_roman", # Other
},
1: "x_mac_japanese_ttx",
2: "x_mac_trad_chinese_ttx",
3: "x_mac_korean_ttx",
6: "mac_greek",
7: "mac_cyrillic",
25: "x_mac_simp_chinese_ttx",
29: "mac_latin2",
35: "mac_turkish",
37: "mac_iceland",
},
2: { # ISO
0: "ascii",
1: "utf_16_be",
2: "latin1",
},
3: { # Microsoft
0: "utf_16_be",
1: "utf_16_be",
2: "shift_jis",
3: "gb2312",
4: "big5",
5: "euc_kr",
6: "johab",
10: "utf_16_be",
},
}
def getEncoding(platformID, platEncID, langID, default=None):
"""Returns the Python encoding name for OpenType platformID/encodingID/langID
triplet. If encoding for these values is not known, by default None is
returned. That can be overriden by passing a value to the default argument.
"""
encoding = _encodingMap.get(platformID, {}).get(platEncID, default)
if isinstance(encoding, dict):
encoding = encoding.get(langID, encoding[Ellipsis])
return encoding

View File

@ -0,0 +1,479 @@
"""Shim module exporting the same ElementTree API for lxml and
xml.etree backends.
When lxml is installed, it is automatically preferred over the built-in
xml.etree module.
On Python 2.7, the cElementTree module is preferred over the pure-python
ElementTree module.
Besides exporting a unified interface, this also defines extra functions
or subclasses built-in ElementTree classes to add features that are
only availble in lxml, like OrderedDict for attributes, pretty_print and
iterwalk.
"""
from fontTools.misc.textTools import tostr
XML_DECLARATION = """<?xml version='1.0' encoding='%s'?>"""
__all__ = [
# public symbols
"Comment",
"dump",
"Element",
"ElementTree",
"fromstring",
"fromstringlist",
"iselement",
"iterparse",
"parse",
"ParseError",
"PI",
"ProcessingInstruction",
"QName",
"SubElement",
"tostring",
"tostringlist",
"TreeBuilder",
"XML",
"XMLParser",
"register_namespace",
]
try:
from lxml.etree import *
_have_lxml = True
except ImportError:
try:
from xml.etree.cElementTree import *
# the cElementTree version of XML function doesn't support
# the optional 'parser' keyword argument
from xml.etree.ElementTree import XML
except ImportError: # pragma: no cover
from xml.etree.ElementTree import *
_have_lxml = False
import sys
# dict is always ordered in python >= 3.6 and on pypy
PY36 = sys.version_info >= (3, 6)
try:
import __pypy__
except ImportError:
__pypy__ = None
_dict_is_ordered = bool(PY36 or __pypy__)
del PY36, __pypy__
if _dict_is_ordered:
_Attrib = dict
else:
from collections import OrderedDict as _Attrib
if isinstance(Element, type):
_Element = Element
else:
# in py27, cElementTree.Element cannot be subclassed, so
# we need to import the pure-python class
from xml.etree.ElementTree import Element as _Element
class Element(_Element):
"""Element subclass that keeps the order of attributes."""
def __init__(self, tag, attrib=_Attrib(), **extra):
super(Element, self).__init__(tag)
self.attrib = _Attrib()
if attrib:
self.attrib.update(attrib)
if extra:
self.attrib.update(extra)
def SubElement(parent, tag, attrib=_Attrib(), **extra):
"""Must override SubElement as well otherwise _elementtree.SubElement
fails if 'parent' is a subclass of Element object.
"""
element = parent.__class__(tag, attrib, **extra)
parent.append(element)
return element
def _iterwalk(element, events, tag):
include = tag is None or element.tag == tag
if include and "start" in events:
yield ("start", element)
for e in element:
for item in _iterwalk(e, events, tag):
yield item
if include:
yield ("end", element)
def iterwalk(element_or_tree, events=("end",), tag=None):
"""A tree walker that generates events from an existing tree as
if it was parsing XML data with iterparse().
Drop-in replacement for lxml.etree.iterwalk.
"""
if iselement(element_or_tree):
element = element_or_tree
else:
element = element_or_tree.getroot()
if tag == "*":
tag = None
for item in _iterwalk(element, events, tag):
yield item
_ElementTree = ElementTree
class ElementTree(_ElementTree):
"""ElementTree subclass that adds 'pretty_print' and 'doctype'
arguments to the 'write' method.
Currently these are only supported for the default XML serialization
'method', and not also for "html" or "text", for these are delegated
to the base class.
"""
def write(
self,
file_or_filename,
encoding=None,
xml_declaration=False,
method=None,
doctype=None,
pretty_print=False,
):
if method and method != "xml":
# delegate to super-class
super(ElementTree, self).write(
file_or_filename,
encoding=encoding,
xml_declaration=xml_declaration,
method=method,
)
return
if encoding is not None and encoding.lower() == "unicode":
if xml_declaration:
raise ValueError(
"Serialisation to unicode must not request an XML declaration"
)
write_declaration = False
encoding = "unicode"
elif xml_declaration is None:
# by default, write an XML declaration only for non-standard encodings
write_declaration = encoding is not None and encoding.upper() not in (
"ASCII",
"UTF-8",
"UTF8",
"US-ASCII",
)
else:
write_declaration = xml_declaration
if encoding is None:
encoding = "ASCII"
if pretty_print:
# NOTE this will modify the tree in-place
_indent(self._root)
with _get_writer(file_or_filename, encoding) as write:
if write_declaration:
write(XML_DECLARATION % encoding.upper())
if pretty_print:
write("\n")
if doctype:
write(_tounicode(doctype))
if pretty_print:
write("\n")
qnames, namespaces = _namespaces(self._root)
_serialize_xml(write, self._root, qnames, namespaces)
import io
def tostring(
element,
encoding=None,
xml_declaration=None,
method=None,
doctype=None,
pretty_print=False,
):
"""Custom 'tostring' function that uses our ElementTree subclass, with
pretty_print support.
"""
stream = io.StringIO() if encoding == "unicode" else io.BytesIO()
ElementTree(element).write(
stream,
encoding=encoding,
xml_declaration=xml_declaration,
method=method,
doctype=doctype,
pretty_print=pretty_print,
)
return stream.getvalue()
# serialization support
import re
# Valid XML strings can include any Unicode character, excluding control
# characters, the surrogate blocks, FFFE, and FFFF:
# Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]
# Here we reversed the pattern to match only the invalid characters.
# For the 'narrow' python builds supporting only UCS-2, which represent
# characters beyond BMP as UTF-16 surrogate pairs, we need to pass through
# the surrogate block. I haven't found a more elegant solution...
UCS2 = sys.maxunicode < 0x10FFFF
if UCS2:
_invalid_xml_string = re.compile(
"[\u0000-\u0008\u000B-\u000C\u000E-\u001F\uFFFE-\uFFFF]"
)
else:
_invalid_xml_string = re.compile(
"[\u0000-\u0008\u000B-\u000C\u000E-\u001F\uD800-\uDFFF\uFFFE-\uFFFF]"
)
def _tounicode(s):
"""Test if a string is valid user input and decode it to unicode string
using ASCII encoding if it's a bytes string.
Reject all bytes/unicode input that contains non-XML characters.
Reject all bytes input that contains non-ASCII characters.
"""
try:
s = tostr(s, encoding="ascii", errors="strict")
except UnicodeDecodeError:
raise ValueError(
"Bytes strings can only contain ASCII characters. "
"Use unicode strings for non-ASCII characters."
)
except AttributeError:
_raise_serialization_error(s)
if s and _invalid_xml_string.search(s):
raise ValueError(
"All strings must be XML compatible: Unicode or ASCII, "
"no NULL bytes or control characters"
)
return s
import contextlib
@contextlib.contextmanager
def _get_writer(file_or_filename, encoding):
# returns text write method and release all resources after using
try:
write = file_or_filename.write
except AttributeError:
# file_or_filename is a file name
f = open(
file_or_filename,
"w",
encoding="utf-8" if encoding == "unicode" else encoding,
errors="xmlcharrefreplace",
)
with f:
yield f.write
else:
# file_or_filename is a file-like object
# encoding determines if it is a text or binary writer
if encoding == "unicode":
# use a text writer as is
yield write
else:
# wrap a binary writer with TextIOWrapper
detach_buffer = False
if isinstance(file_or_filename, io.BufferedIOBase):
buf = file_or_filename
elif isinstance(file_or_filename, io.RawIOBase):
buf = io.BufferedWriter(file_or_filename)
detach_buffer = True
else:
# This is to handle passed objects that aren't in the
# IOBase hierarchy, but just have a write method
buf = io.BufferedIOBase()
buf.writable = lambda: True
buf.write = write
try:
# TextIOWrapper uses this methods to determine
# if BOM (for UTF-16, etc) should be added
buf.seekable = file_or_filename.seekable
buf.tell = file_or_filename.tell
except AttributeError:
pass
wrapper = io.TextIOWrapper(
buf,
encoding=encoding,
errors="xmlcharrefreplace",
newline="\n",
)
try:
yield wrapper.write
finally:
# Keep the original file open when the TextIOWrapper and
# the BufferedWriter are destroyed
wrapper.detach()
if detach_buffer:
buf.detach()
from xml.etree.ElementTree import _namespace_map
def _namespaces(elem):
# identify namespaces used in this tree
# maps qnames to *encoded* prefix:local names
qnames = {None: None}
# maps uri:s to prefixes
namespaces = {}
def add_qname(qname):
# calculate serialized qname representation
try:
qname = _tounicode(qname)
if qname[:1] == "{":
uri, tag = qname[1:].rsplit("}", 1)
prefix = namespaces.get(uri)
if prefix is None:
prefix = _namespace_map.get(uri)
if prefix is None:
prefix = "ns%d" % len(namespaces)
else:
prefix = _tounicode(prefix)
if prefix != "xml":
namespaces[uri] = prefix
if prefix:
qnames[qname] = "%s:%s" % (prefix, tag)
else:
qnames[qname] = tag # default element
else:
qnames[qname] = qname
except TypeError:
_raise_serialization_error(qname)
# populate qname and namespaces table
for elem in elem.iter():
tag = elem.tag
if isinstance(tag, QName):
if tag.text not in qnames:
add_qname(tag.text)
elif isinstance(tag, str):
if tag not in qnames:
add_qname(tag)
elif tag is not None and tag is not Comment and tag is not PI:
_raise_serialization_error(tag)
for key, value in elem.items():
if isinstance(key, QName):
key = key.text
if key not in qnames:
add_qname(key)
if isinstance(value, QName) and value.text not in qnames:
add_qname(value.text)
text = elem.text
if isinstance(text, QName) and text.text not in qnames:
add_qname(text.text)
return qnames, namespaces
def _serialize_xml(write, elem, qnames, namespaces, **kwargs):
tag = elem.tag
text = elem.text
if tag is Comment:
write("<!--%s-->" % _tounicode(text))
elif tag is ProcessingInstruction:
write("<?%s?>" % _tounicode(text))
else:
tag = qnames[_tounicode(tag) if tag is not None else None]
if tag is None:
if text:
write(_escape_cdata(text))
for e in elem:
_serialize_xml(write, e, qnames, None)
else:
write("<" + tag)
if namespaces:
for uri, prefix in sorted(
namespaces.items(), key=lambda x: x[1]
): # sort on prefix
if prefix:
prefix = ":" + prefix
write(' xmlns%s="%s"' % (prefix, _escape_attrib(uri)))
attrs = elem.attrib
if attrs:
# try to keep existing attrib order
if len(attrs) <= 1 or type(attrs) is _Attrib:
items = attrs.items()
else:
# if plain dict, use lexical order
items = sorted(attrs.items())
for k, v in items:
if isinstance(k, QName):
k = _tounicode(k.text)
else:
k = _tounicode(k)
if isinstance(v, QName):
v = qnames[_tounicode(v.text)]
else:
v = _escape_attrib(v)
write(' %s="%s"' % (qnames[k], v))
if text is not None or len(elem):
write(">")
if text:
write(_escape_cdata(text))
for e in elem:
_serialize_xml(write, e, qnames, None)
write("</" + tag + ">")
else:
write("/>")
if elem.tail:
write(_escape_cdata(elem.tail))
def _raise_serialization_error(text):
raise TypeError("cannot serialize %r (type %s)" % (text, type(text).__name__))
def _escape_cdata(text):
# escape character data
try:
text = _tounicode(text)
# it's worth avoiding do-nothing calls for short strings
if "&" in text:
text = text.replace("&", "&amp;")
if "<" in text:
text = text.replace("<", "&lt;")
if ">" in text:
text = text.replace(">", "&gt;")
return text
except (TypeError, AttributeError):
_raise_serialization_error(text)
def _escape_attrib(text):
# escape attribute value
try:
text = _tounicode(text)
if "&" in text:
text = text.replace("&", "&amp;")
if "<" in text:
text = text.replace("<", "&lt;")
if ">" in text:
text = text.replace(">", "&gt;")
if '"' in text:
text = text.replace('"', "&quot;")
if "\n" in text:
text = text.replace("\n", "&#10;")
return text
except (TypeError, AttributeError):
_raise_serialization_error(text)
def _indent(elem, level=0):
# From http://effbot.org/zone/element-lib.htm#prettyprint
i = "\n" + level * " "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
_indent(elem, level + 1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i

View File

@ -0,0 +1,245 @@
"""
This module implements the algorithm for converting between a "user name" -
something that a user can choose arbitrarily inside a font editor - and a file
name suitable for use in a wide range of operating systems and filesystems.
The `UFO 3 specification <http://unifiedfontobject.org/versions/ufo3/conventions/>`_
provides an example of an algorithm for such conversion, which avoids illegal
characters, reserved file names, ambiguity between upper- and lower-case
characters, and clashes with existing files.
This code was originally copied from
`ufoLib <https://github.com/unified-font-object/ufoLib/blob/8747da7/Lib/ufoLib/filenames.py>`_
by Tal Leming and is copyright (c) 2005-2016, The RoboFab Developers:
- Erik van Blokland
- Tal Leming
- Just van Rossum
"""
illegalCharacters = r"\" * + / : < > ? [ \ ] | \0".split(" ")
illegalCharacters += [chr(i) for i in range(1, 32)]
illegalCharacters += [chr(0x7F)]
reservedFileNames = "CON PRN AUX CLOCK$ NUL A:-Z: COM1".lower().split(" ")
reservedFileNames += "LPT1 LPT2 LPT3 COM2 COM3 COM4".lower().split(" ")
maxFileNameLength = 255
class NameTranslationError(Exception):
pass
def userNameToFileName(userName, existing=[], prefix="", suffix=""):
"""Converts from a user name to a file name.
Takes care to avoid illegal characters, reserved file names, ambiguity between
upper- and lower-case characters, and clashes with existing files.
Args:
userName (str): The input file name.
existing: A case-insensitive list of all existing file names.
prefix: Prefix to be prepended to the file name.
suffix: Suffix to be appended to the file name.
Returns:
A suitable filename.
Raises:
NameTranslationError: If no suitable name could be generated.
Examples::
>>> userNameToFileName("a") == "a"
True
>>> userNameToFileName("A") == "A_"
True
>>> userNameToFileName("AE") == "A_E_"
True
>>> userNameToFileName("Ae") == "A_e"
True
>>> userNameToFileName("ae") == "ae"
True
>>> userNameToFileName("aE") == "aE_"
True
>>> userNameToFileName("a.alt") == "a.alt"
True
>>> userNameToFileName("A.alt") == "A_.alt"
True
>>> userNameToFileName("A.Alt") == "A_.A_lt"
True
>>> userNameToFileName("A.aLt") == "A_.aL_t"
True
>>> userNameToFileName(u"A.alT") == "A_.alT_"
True
>>> userNameToFileName("T_H") == "T__H_"
True
>>> userNameToFileName("T_h") == "T__h"
True
>>> userNameToFileName("t_h") == "t_h"
True
>>> userNameToFileName("F_F_I") == "F__F__I_"
True
>>> userNameToFileName("f_f_i") == "f_f_i"
True
>>> userNameToFileName("Aacute_V.swash") == "A_acute_V_.swash"
True
>>> userNameToFileName(".notdef") == "_notdef"
True
>>> userNameToFileName("con") == "_con"
True
>>> userNameToFileName("CON") == "C_O_N_"
True
>>> userNameToFileName("con.alt") == "_con.alt"
True
>>> userNameToFileName("alt.con") == "alt._con"
True
"""
# the incoming name must be a str
if not isinstance(userName, str):
raise ValueError("The value for userName must be a string.")
# establish the prefix and suffix lengths
prefixLength = len(prefix)
suffixLength = len(suffix)
# replace an initial period with an _
# if no prefix is to be added
if not prefix and userName[0] == ".":
userName = "_" + userName[1:]
# filter the user name
filteredUserName = []
for character in userName:
# replace illegal characters with _
if character in illegalCharacters:
character = "_"
# add _ to all non-lower characters
elif character != character.lower():
character += "_"
filteredUserName.append(character)
userName = "".join(filteredUserName)
# clip to 255
sliceLength = maxFileNameLength - prefixLength - suffixLength
userName = userName[:sliceLength]
# test for illegal files names
parts = []
for part in userName.split("."):
if part.lower() in reservedFileNames:
part = "_" + part
parts.append(part)
userName = ".".join(parts)
# test for clash
fullName = prefix + userName + suffix
if fullName.lower() in existing:
fullName = handleClash1(userName, existing, prefix, suffix)
# finished
return fullName
def handleClash1(userName, existing=[], prefix="", suffix=""):
"""
existing should be a case-insensitive list
of all existing file names.
>>> prefix = ("0" * 5) + "."
>>> suffix = "." + ("0" * 10)
>>> existing = ["a" * 5]
>>> e = list(existing)
>>> handleClash1(userName="A" * 5, existing=e,
... prefix=prefix, suffix=suffix) == (
... '00000.AAAAA000000000000001.0000000000')
True
>>> e = list(existing)
>>> e.append(prefix + "aaaaa" + "1".zfill(15) + suffix)
>>> handleClash1(userName="A" * 5, existing=e,
... prefix=prefix, suffix=suffix) == (
... '00000.AAAAA000000000000002.0000000000')
True
>>> e = list(existing)
>>> e.append(prefix + "AAAAA" + "2".zfill(15) + suffix)
>>> handleClash1(userName="A" * 5, existing=e,
... prefix=prefix, suffix=suffix) == (
... '00000.AAAAA000000000000001.0000000000')
True
"""
# if the prefix length + user name length + suffix length + 15 is at
# or past the maximum length, silce 15 characters off of the user name
prefixLength = len(prefix)
suffixLength = len(suffix)
if prefixLength + len(userName) + suffixLength + 15 > maxFileNameLength:
l = prefixLength + len(userName) + suffixLength + 15
sliceLength = maxFileNameLength - l
userName = userName[:sliceLength]
finalName = None
# try to add numbers to create a unique name
counter = 1
while finalName is None:
name = userName + str(counter).zfill(15)
fullName = prefix + name + suffix
if fullName.lower() not in existing:
finalName = fullName
break
else:
counter += 1
if counter >= 999999999999999:
break
# if there is a clash, go to the next fallback
if finalName is None:
finalName = handleClash2(existing, prefix, suffix)
# finished
return finalName
def handleClash2(existing=[], prefix="", suffix=""):
"""
existing should be a case-insensitive list
of all existing file names.
>>> prefix = ("0" * 5) + "."
>>> suffix = "." + ("0" * 10)
>>> existing = [prefix + str(i) + suffix for i in range(100)]
>>> e = list(existing)
>>> handleClash2(existing=e, prefix=prefix, suffix=suffix) == (
... '00000.100.0000000000')
True
>>> e = list(existing)
>>> e.remove(prefix + "1" + suffix)
>>> handleClash2(existing=e, prefix=prefix, suffix=suffix) == (
... '00000.1.0000000000')
True
>>> e = list(existing)
>>> e.remove(prefix + "2" + suffix)
>>> handleClash2(existing=e, prefix=prefix, suffix=suffix) == (
... '00000.2.0000000000')
True
"""
# calculate the longest possible string
maxLength = maxFileNameLength - len(prefix) - len(suffix)
maxValue = int("9" * maxLength)
# try to find a number
finalName = None
counter = 1
while finalName is None:
fullName = prefix + str(counter) + suffix
if fullName.lower() not in existing:
finalName = fullName
break
else:
counter += 1
if counter >= maxValue:
break
# raise an error if nothing has been found
if finalName is None:
raise NameTranslationError("No unique name could be found.")
# finished
return finalName
if __name__ == "__main__":
import doctest
import sys
sys.exit(doctest.testmod().failed)

View File

@ -0,0 +1,253 @@
"""
The `OpenType specification <https://docs.microsoft.com/en-us/typography/opentype/spec/otff#data-types>`_
defines two fixed-point data types:
``Fixed``
A 32-bit signed fixed-point number with a 16 bit twos-complement
magnitude component and 16 fractional bits.
``F2DOT14``
A 16-bit signed fixed-point number with a 2 bit twos-complement
magnitude component and 14 fractional bits.
To support reading and writing data with these data types, this module provides
functions for converting between fixed-point, float and string representations.
.. data:: MAX_F2DOT14
The maximum value that can still fit in an F2Dot14. (1.99993896484375)
"""
from .roundTools import otRound, nearestMultipleShortestRepr
import logging
log = logging.getLogger(__name__)
__all__ = [
"MAX_F2DOT14",
"fixedToFloat",
"floatToFixed",
"floatToFixedToFloat",
"floatToFixedToStr",
"fixedToStr",
"strToFixed",
"strToFixedToFloat",
"ensureVersionIsLong",
"versionToFixed",
]
MAX_F2DOT14 = 0x7FFF / (1 << 14)
def fixedToFloat(value, precisionBits):
"""Converts a fixed-point number to a float given the number of
precision bits.
Args:
value (int): Number in fixed-point format.
precisionBits (int): Number of precision bits.
Returns:
Floating point value.
Examples::
>>> import math
>>> f = fixedToFloat(-10139, precisionBits=14)
>>> math.isclose(f, -0.61883544921875)
True
"""
return value / (1 << precisionBits)
def floatToFixed(value, precisionBits):
"""Converts a float to a fixed-point number given the number of
precision bits.
Args:
value (float): Floating point value.
precisionBits (int): Number of precision bits.
Returns:
int: Fixed-point representation.
Examples::
>>> floatToFixed(-0.61883544921875, precisionBits=14)
-10139
>>> floatToFixed(-0.61884, precisionBits=14)
-10139
"""
return otRound(value * (1 << precisionBits))
def floatToFixedToFloat(value, precisionBits):
"""Converts a float to a fixed-point number and back again.
By converting the float to fixed, rounding it, and converting it back
to float again, this returns a floating point values which is exactly
representable in fixed-point format.
Note: this **is** equivalent to ``fixedToFloat(floatToFixed(value))``.
Args:
value (float): The input floating point value.
precisionBits (int): Number of precision bits.
Returns:
float: The transformed and rounded value.
Examples::
>>> import math
>>> f1 = -0.61884
>>> f2 = floatToFixedToFloat(-0.61884, precisionBits=14)
>>> f1 != f2
True
>>> math.isclose(f2, -0.61883544921875)
True
"""
scale = 1 << precisionBits
return otRound(value * scale) / scale
def fixedToStr(value, precisionBits):
"""Converts a fixed-point number to a string representing a decimal float.
This chooses the float that has the shortest decimal representation (the least
number of fractional decimal digits).
For example, to convert a fixed-point number in a 2.14 format, use
``precisionBits=14``::
>>> fixedToStr(-10139, precisionBits=14)
'-0.61884'
This is pretty slow compared to the simple division used in ``fixedToFloat``.
Use sporadically when you need to serialize or print the fixed-point number in
a human-readable form.
It uses nearestMultipleShortestRepr under the hood.
Args:
value (int): The fixed-point value to convert.
precisionBits (int): Number of precision bits, *up to a maximum of 16*.
Returns:
str: A string representation of the value.
"""
scale = 1 << precisionBits
return nearestMultipleShortestRepr(value / scale, factor=1.0 / scale)
def strToFixed(string, precisionBits):
"""Converts a string representing a decimal float to a fixed-point number.
Args:
string (str): A string representing a decimal float.
precisionBits (int): Number of precision bits, *up to a maximum of 16*.
Returns:
int: Fixed-point representation.
Examples::
>>> ## to convert a float string to a 2.14 fixed-point number:
>>> strToFixed('-0.61884', precisionBits=14)
-10139
"""
value = float(string)
return otRound(value * (1 << precisionBits))
def strToFixedToFloat(string, precisionBits):
"""Convert a string to a decimal float with fixed-point rounding.
This first converts string to a float, then turns it into a fixed-point
number with ``precisionBits`` fractional binary digits, then back to a
float again.
This is simply a shorthand for fixedToFloat(floatToFixed(float(s))).
Args:
string (str): A string representing a decimal float.
precisionBits (int): Number of precision bits.
Returns:
float: The transformed and rounded value.
Examples::
>>> import math
>>> s = '-0.61884'
>>> bits = 14
>>> f = strToFixedToFloat(s, precisionBits=bits)
>>> math.isclose(f, -0.61883544921875)
True
>>> f == fixedToFloat(floatToFixed(float(s), precisionBits=bits), precisionBits=bits)
True
"""
value = float(string)
scale = 1 << precisionBits
return otRound(value * scale) / scale
def floatToFixedToStr(value, precisionBits):
"""Convert float to string with fixed-point rounding.
This uses the shortest decimal representation (ie. the least
number of fractional decimal digits) to represent the equivalent
fixed-point number with ``precisionBits`` fractional binary digits.
It uses nearestMultipleShortestRepr under the hood.
>>> floatToFixedToStr(-0.61883544921875, precisionBits=14)
'-0.61884'
Args:
value (float): The float value to convert.
precisionBits (int): Number of precision bits, *up to a maximum of 16*.
Returns:
str: A string representation of the value.
"""
scale = 1 << precisionBits
return nearestMultipleShortestRepr(value, factor=1.0 / scale)
def ensureVersionIsLong(value):
"""Ensure a table version is an unsigned long.
OpenType table version numbers are expressed as a single unsigned long
comprising of an unsigned short major version and unsigned short minor
version. This function detects if the value to be used as a version number
looks too small (i.e. is less than ``0x10000``), and converts it to
fixed-point using :func:`floatToFixed` if so.
Args:
value (Number): a candidate table version number.
Returns:
int: A table version number, possibly corrected to fixed-point.
"""
if value < 0x10000:
newValue = floatToFixed(value, 16)
log.warning(
"Table version value is a float: %.4f; " "fix to use hex instead: 0x%08x",
value,
newValue,
)
value = newValue
return value
def versionToFixed(value):
"""Ensure a table version number is fixed-point.
Args:
value (str): a candidate table version number.
Returns:
int: A table version number, possibly corrected to fixed-point.
"""
value = int(value, 0) if value.startswith("0") else float(value)
value = ensureVersionIsLong(value)
return value

View File

@ -0,0 +1,25 @@
__all__ = ["popCount", "bit_count", "bit_indices"]
try:
bit_count = int.bit_count
except AttributeError:
def bit_count(v):
return bin(v).count("1")
"""Return number of 1 bits (population count) of the absolute value of an integer.
See https://docs.python.org/3.10/library/stdtypes.html#int.bit_count
"""
popCount = bit_count # alias
def bit_indices(v):
"""Return list of indices where bits are set, 0 being the index of the least significant bit.
>>> bit_indices(0b101)
[0, 2]
"""
return [i for i, b in enumerate(bin(v)[::-1]) if b == "1"]

View File

@ -0,0 +1,12 @@
from itertools import *
# Python 3.12:
if "batched" not in globals():
# https://docs.python.org/3/library/itertools.html#itertools.batched
def batched(iterable, n):
# batched('ABCDEFG', 3) --> ABC DEF G
if n < 1:
raise ValueError("n must be at least one")
it = iter(iterable)
while batch := tuple(islice(it, n)):
yield batch

View File

@ -0,0 +1,42 @@
from collections import UserDict, UserList
__all__ = ["LazyDict", "LazyList"]
class LazyDict(UserDict):
def __init__(self, data):
super().__init__()
self.data = data
def __getitem__(self, k):
v = self.data[k]
if callable(v):
v = v(k)
self.data[k] = v
return v
class LazyList(UserList):
def __getitem__(self, k):
if isinstance(k, slice):
indices = range(*k.indices(len(self)))
return [self[i] for i in indices]
v = self.data[k]
if callable(v):
v = v(k)
self.data[k] = v
return v
def __add__(self, other):
if isinstance(other, LazyList):
other = list(other)
elif isinstance(other, list):
pass
else:
return NotImplemented
return list(self) + other
def __radd__(self, other):
if not isinstance(other, list):
return NotImplemented
return other + list(self)

View File

@ -0,0 +1,543 @@
import sys
import logging
import timeit
from functools import wraps
from collections.abc import Mapping, Callable
import warnings
from logging import PercentStyle
# default logging level used by Timer class
TIME_LEVEL = logging.DEBUG
# per-level format strings used by the default formatter
# (the level name is not printed for INFO and DEBUG messages)
DEFAULT_FORMATS = {
"*": "%(levelname)s: %(message)s",
"INFO": "%(message)s",
"DEBUG": "%(message)s",
}
class LevelFormatter(logging.Formatter):
"""Log formatter with level-specific formatting.
Formatter class which optionally takes a dict of logging levels to
format strings, allowing to customise the log records appearance for
specific levels.
Attributes:
fmt: A dictionary mapping logging levels to format strings.
The ``*`` key identifies the default format string.
datefmt: As per py:class:`logging.Formatter`
style: As per py:class:`logging.Formatter`
>>> import sys
>>> handler = logging.StreamHandler(sys.stdout)
>>> formatter = LevelFormatter(
... fmt={
... '*': '[%(levelname)s] %(message)s',
... 'DEBUG': '%(name)s [%(levelname)s] %(message)s',
... 'INFO': '%(message)s',
... })
>>> handler.setFormatter(formatter)
>>> log = logging.getLogger('test')
>>> log.setLevel(logging.DEBUG)
>>> log.addHandler(handler)
>>> log.debug('this uses a custom format string')
test [DEBUG] this uses a custom format string
>>> log.info('this also uses a custom format string')
this also uses a custom format string
>>> log.warning("this one uses the default format string")
[WARNING] this one uses the default format string
"""
def __init__(self, fmt=None, datefmt=None, style="%"):
if style != "%":
raise ValueError(
"only '%' percent style is supported in both python 2 and 3"
)
if fmt is None:
fmt = DEFAULT_FORMATS
if isinstance(fmt, str):
default_format = fmt
custom_formats = {}
elif isinstance(fmt, Mapping):
custom_formats = dict(fmt)
default_format = custom_formats.pop("*", None)
else:
raise TypeError("fmt must be a str or a dict of str: %r" % fmt)
super(LevelFormatter, self).__init__(default_format, datefmt)
self.default_format = self._fmt
self.custom_formats = {}
for level, fmt in custom_formats.items():
level = logging._checkLevel(level)
self.custom_formats[level] = fmt
def format(self, record):
if self.custom_formats:
fmt = self.custom_formats.get(record.levelno, self.default_format)
if self._fmt != fmt:
self._fmt = fmt
# for python >= 3.2, _style needs to be set if _fmt changes
if PercentStyle:
self._style = PercentStyle(fmt)
return super(LevelFormatter, self).format(record)
def configLogger(**kwargs):
"""A more sophisticated logging system configuation manager.
This is more or less the same as :py:func:`logging.basicConfig`,
with some additional options and defaults.
The default behaviour is to create a ``StreamHandler`` which writes to
sys.stderr, set a formatter using the ``DEFAULT_FORMATS`` strings, and add
the handler to the top-level library logger ("fontTools").
A number of optional keyword arguments may be specified, which can alter
the default behaviour.
Args:
logger: Specifies the logger name or a Logger instance to be
configured. (Defaults to "fontTools" logger). Unlike ``basicConfig``,
this function can be called multiple times to reconfigure a logger.
If the logger or any of its children already exists before the call is
made, they will be reset before the new configuration is applied.
filename: Specifies that a ``FileHandler`` be created, using the
specified filename, rather than a ``StreamHandler``.
filemode: Specifies the mode to open the file, if filename is
specified. (If filemode is unspecified, it defaults to ``a``).
format: Use the specified format string for the handler. This
argument also accepts a dictionary of format strings keyed by
level name, to allow customising the records appearance for
specific levels. The special ``'*'`` key is for 'any other' level.
datefmt: Use the specified date/time format.
level: Set the logger level to the specified level.
stream: Use the specified stream to initialize the StreamHandler. Note
that this argument is incompatible with ``filename`` - if both
are present, ``stream`` is ignored.
handlers: If specified, this should be an iterable of already created
handlers, which will be added to the logger. Any handler in the
list which does not have a formatter assigned will be assigned the
formatter created in this function.
filters: If specified, this should be an iterable of already created
filters. If the ``handlers`` do not already have filters assigned,
these filters will be added to them.
propagate: All loggers have a ``propagate`` attribute which determines
whether to continue searching for handlers up the logging hierarchy.
If not provided, the "propagate" attribute will be set to ``False``.
"""
# using kwargs to enforce keyword-only arguments in py2.
handlers = kwargs.pop("handlers", None)
if handlers is None:
if "stream" in kwargs and "filename" in kwargs:
raise ValueError(
"'stream' and 'filename' should not be " "specified together"
)
else:
if "stream" in kwargs or "filename" in kwargs:
raise ValueError(
"'stream' or 'filename' should not be "
"specified together with 'handlers'"
)
if handlers is None:
filename = kwargs.pop("filename", None)
mode = kwargs.pop("filemode", "a")
if filename:
h = logging.FileHandler(filename, mode)
else:
stream = kwargs.pop("stream", None)
h = logging.StreamHandler(stream)
handlers = [h]
# By default, the top-level library logger is configured.
logger = kwargs.pop("logger", "fontTools")
if not logger or isinstance(logger, str):
# empty "" or None means the 'root' logger
logger = logging.getLogger(logger)
# before (re)configuring, reset named logger and its children (if exist)
_resetExistingLoggers(parent=logger.name)
# use DEFAULT_FORMATS if 'format' is None
fs = kwargs.pop("format", None)
dfs = kwargs.pop("datefmt", None)
# XXX: '%' is the only format style supported on both py2 and 3
style = kwargs.pop("style", "%")
fmt = LevelFormatter(fs, dfs, style)
filters = kwargs.pop("filters", [])
for h in handlers:
if h.formatter is None:
h.setFormatter(fmt)
if not h.filters:
for f in filters:
h.addFilter(f)
logger.addHandler(h)
if logger.name != "root":
# stop searching up the hierarchy for handlers
logger.propagate = kwargs.pop("propagate", False)
# set a custom severity level
level = kwargs.pop("level", None)
if level is not None:
logger.setLevel(level)
if kwargs:
keys = ", ".join(kwargs.keys())
raise ValueError("Unrecognised argument(s): %s" % keys)
def _resetExistingLoggers(parent="root"):
"""Reset the logger named 'parent' and all its children to their initial
state, if they already exist in the current configuration.
"""
root = logging.root
# get sorted list of all existing loggers
existing = sorted(root.manager.loggerDict.keys())
if parent == "root":
# all the existing loggers are children of 'root'
loggers_to_reset = [parent] + existing
elif parent not in existing:
# nothing to do
return
elif parent in existing:
loggers_to_reset = [parent]
# collect children, starting with the entry after parent name
i = existing.index(parent) + 1
prefixed = parent + "."
pflen = len(prefixed)
num_existing = len(existing)
while i < num_existing:
if existing[i][:pflen] == prefixed:
loggers_to_reset.append(existing[i])
i += 1
for name in loggers_to_reset:
if name == "root":
root.setLevel(logging.WARNING)
for h in root.handlers[:]:
root.removeHandler(h)
for f in root.filters[:]:
root.removeFilters(f)
root.disabled = False
else:
logger = root.manager.loggerDict[name]
logger.level = logging.NOTSET
logger.handlers = []
logger.filters = []
logger.propagate = True
logger.disabled = False
class Timer(object):
"""Keeps track of overall time and split/lap times.
>>> import time
>>> timer = Timer()
>>> time.sleep(0.01)
>>> print("First lap:", timer.split())
First lap: ...
>>> time.sleep(0.02)
>>> print("Second lap:", timer.split())
Second lap: ...
>>> print("Overall time:", timer.time())
Overall time: ...
Can be used as a context manager inside with-statements.
>>> with Timer() as t:
... time.sleep(0.01)
>>> print("%0.3f seconds" % t.elapsed)
0... seconds
If initialised with a logger, it can log the elapsed time automatically
upon exiting the with-statement.
>>> import logging
>>> log = logging.getLogger("my-fancy-timer-logger")
>>> configLogger(logger=log, level="DEBUG", format="%(message)s", stream=sys.stdout)
>>> with Timer(log, 'do something'):
... time.sleep(0.01)
Took ... to do something
The same Timer instance, holding a reference to a logger, can be reused
in multiple with-statements, optionally with different messages or levels.
>>> timer = Timer(log)
>>> with timer():
... time.sleep(0.01)
elapsed time: ...s
>>> with timer('redo it', level=logging.INFO):
... time.sleep(0.02)
Took ... to redo it
It can also be used as a function decorator to log the time elapsed to run
the decorated function.
>>> @timer()
... def test1():
... time.sleep(0.01)
>>> @timer('run test 2', level=logging.INFO)
... def test2():
... time.sleep(0.02)
>>> test1()
Took ... to run 'test1'
>>> test2()
Took ... to run test 2
"""
# timeit.default_timer choses the most accurate clock for each platform
_time = timeit.default_timer
default_msg = "elapsed time: %(time).3fs"
default_format = "Took %(time).3fs to %(msg)s"
def __init__(self, logger=None, msg=None, level=None, start=None):
self.reset(start)
if logger is None:
for arg in ("msg", "level"):
if locals().get(arg) is not None:
raise ValueError("'%s' can't be specified without a 'logger'" % arg)
self.logger = logger
self.level = level if level is not None else TIME_LEVEL
self.msg = msg
def reset(self, start=None):
"""Reset timer to 'start_time' or the current time."""
if start is None:
self.start = self._time()
else:
self.start = start
self.last = self.start
self.elapsed = 0.0
def time(self):
"""Return the overall time (in seconds) since the timer started."""
return self._time() - self.start
def split(self):
"""Split and return the lap time (in seconds) in between splits."""
current = self._time()
self.elapsed = current - self.last
self.last = current
return self.elapsed
def formatTime(self, msg, time):
"""Format 'time' value in 'msg' and return formatted string.
If 'msg' contains a '%(time)' format string, try to use that.
Otherwise, use the predefined 'default_format'.
If 'msg' is empty or None, fall back to 'default_msg'.
"""
if not msg:
msg = self.default_msg
if msg.find("%(time)") < 0:
msg = self.default_format % {"msg": msg, "time": time}
else:
try:
msg = msg % {"time": time}
except (KeyError, ValueError):
pass # skip if the format string is malformed
return msg
def __enter__(self):
"""Start a new lap"""
self.last = self._time()
self.elapsed = 0.0
return self
def __exit__(self, exc_type, exc_value, traceback):
"""End the current lap. If timer has a logger, log the time elapsed,
using the format string in self.msg (or the default one).
"""
time = self.split()
if self.logger is None or exc_type:
# if there's no logger attached, or if any exception occurred in
# the with-statement, exit without logging the time
return
message = self.formatTime(self.msg, time)
# Allow log handlers to see the individual parts to facilitate things
# like a server accumulating aggregate stats.
msg_parts = {"msg": self.msg, "time": time}
self.logger.log(self.level, message, msg_parts)
def __call__(self, func_or_msg=None, **kwargs):
"""If the first argument is a function, return a decorator which runs
the wrapped function inside Timer's context manager.
Otherwise, treat the first argument as a 'msg' string and return an updated
Timer instance, referencing the same logger.
A 'level' keyword can also be passed to override self.level.
"""
if isinstance(func_or_msg, Callable):
func = func_or_msg
# use the function name when no explicit 'msg' is provided
if not self.msg:
self.msg = "run '%s'" % func.__name__
@wraps(func)
def wrapper(*args, **kwds):
with self:
return func(*args, **kwds)
return wrapper
else:
msg = func_or_msg or kwargs.get("msg")
level = kwargs.get("level", self.level)
return self.__class__(self.logger, msg, level)
def __float__(self):
return self.elapsed
def __int__(self):
return int(self.elapsed)
def __str__(self):
return "%.3f" % self.elapsed
class ChannelsFilter(logging.Filter):
"""Provides a hierarchical filter for log entries based on channel names.
Filters out records emitted from a list of enabled channel names,
including their children. It works the same as the ``logging.Filter``
class, but allows the user to specify multiple channel names.
>>> import sys
>>> handler = logging.StreamHandler(sys.stdout)
>>> handler.setFormatter(logging.Formatter("%(message)s"))
>>> filter = ChannelsFilter("A.B", "C.D")
>>> handler.addFilter(filter)
>>> root = logging.getLogger()
>>> root.addHandler(handler)
>>> root.setLevel(level=logging.DEBUG)
>>> logging.getLogger('A.B').debug('this record passes through')
this record passes through
>>> logging.getLogger('A.B.C').debug('records from children also pass')
records from children also pass
>>> logging.getLogger('C.D').debug('this one as well')
this one as well
>>> logging.getLogger('A.B.').debug('also this one')
also this one
>>> logging.getLogger('A.F').debug('but this one does not!')
>>> logging.getLogger('C.DE').debug('neither this one!')
"""
def __init__(self, *names):
self.names = names
self.num = len(names)
self.lengths = {n: len(n) for n in names}
def filter(self, record):
if self.num == 0:
return True
for name in self.names:
nlen = self.lengths[name]
if name == record.name:
return True
elif record.name.find(name, 0, nlen) == 0 and record.name[nlen] == ".":
return True
return False
class CapturingLogHandler(logging.Handler):
def __init__(self, logger, level):
super(CapturingLogHandler, self).__init__(level=level)
self.records = []
if isinstance(logger, str):
self.logger = logging.getLogger(logger)
else:
self.logger = logger
def __enter__(self):
self.original_disabled = self.logger.disabled
self.original_level = self.logger.level
self.original_propagate = self.logger.propagate
self.logger.addHandler(self)
self.logger.setLevel(self.level)
self.logger.disabled = False
self.logger.propagate = False
return self
def __exit__(self, type, value, traceback):
self.logger.removeHandler(self)
self.logger.setLevel(self.original_level)
self.logger.disabled = self.original_disabled
self.logger.propagate = self.original_propagate
return self
def emit(self, record):
self.records.append(record)
def assertRegex(self, regexp, msg=None):
import re
pattern = re.compile(regexp)
for r in self.records:
if pattern.search(r.getMessage()):
return True
if msg is None:
msg = "Pattern '%s' not found in logger records" % regexp
assert 0, msg
class LogMixin(object):
"""Mixin class that adds logging functionality to another class.
You can define a new class that subclasses from ``LogMixin`` as well as
other base classes through multiple inheritance.
All instances of that class will have a ``log`` property that returns
a ``logging.Logger`` named after their respective ``<module>.<class>``.
For example:
>>> class BaseClass(object):
... pass
>>> class MyClass(LogMixin, BaseClass):
... pass
>>> a = MyClass()
>>> isinstance(a.log, logging.Logger)
True
>>> print(a.log.name)
fontTools.misc.loggingTools.MyClass
>>> class AnotherClass(MyClass):
... pass
>>> b = AnotherClass()
>>> isinstance(b.log, logging.Logger)
True
>>> print(b.log.name)
fontTools.misc.loggingTools.AnotherClass
"""
@property
def log(self):
if not hasattr(self, "_log"):
name = ".".join((self.__class__.__module__, self.__class__.__name__))
self._log = logging.getLogger(name)
return self._log
def deprecateArgument(name, msg, category=UserWarning):
"""Raise a warning about deprecated function argument 'name'."""
warnings.warn("%r is deprecated; %s" % (name, msg), category=category, stacklevel=3)
def deprecateFunction(msg, category=UserWarning):
"""Decorator to raise a warning when a deprecated function is called."""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
warnings.warn(
"%r is deprecated; %s" % (func.__name__, msg),
category=category,
stacklevel=2,
)
return func(*args, **kwargs)
return wrapper
return decorator
if __name__ == "__main__":
import doctest
sys.exit(doctest.testmod(optionflags=doctest.ELLIPSIS).failed)

View File

@ -0,0 +1,56 @@
from fontTools.misc.textTools import Tag, bytesjoin, strjoin
try:
import xattr
except ImportError:
xattr = None
def _reverseString(s):
s = list(s)
s.reverse()
return strjoin(s)
def getMacCreatorAndType(path):
"""Returns file creator and file type codes for a path.
Args:
path (str): A file path.
Returns:
A tuple of two :py:class:`fontTools.textTools.Tag` objects, the first
representing the file creator and the second representing the
file type.
"""
if xattr is not None:
try:
finderInfo = xattr.getxattr(path, "com.apple.FinderInfo")
except (KeyError, IOError):
pass
else:
fileType = Tag(finderInfo[:4])
fileCreator = Tag(finderInfo[4:8])
return fileCreator, fileType
return None, None
def setMacCreatorAndType(path, fileCreator, fileType):
"""Set file creator and file type codes for a path.
Note that if the ``xattr`` module is not installed, no action is
taken but no error is raised.
Args:
path (str): A file path.
fileCreator: A four-character file creator tag.
fileType: A four-character file type tag.
"""
if xattr is not None:
from fontTools.misc.textTools import pad
if not all(len(s) == 4 for s in (fileCreator, fileType)):
raise TypeError("arg must be string of 4 chars")
finderInfo = pad(bytesjoin([fileType, fileCreator]), 32)
xattr.setxattr(path, "com.apple.FinderInfo", finderInfo)

View File

@ -0,0 +1,261 @@
from io import BytesIO
import struct
from fontTools.misc import sstruct
from fontTools.misc.textTools import bytesjoin, tostr
from collections import OrderedDict
from collections.abc import MutableMapping
class ResourceError(Exception):
pass
class ResourceReader(MutableMapping):
"""Reader for Mac OS resource forks.
Parses a resource fork and returns resources according to their type.
If run on OS X, this will open the resource fork in the filesystem.
Otherwise, it will open the file itself and attempt to read it as
though it were a resource fork.
The returned object can be indexed by type and iterated over,
returning in each case a list of py:class:`Resource` objects
representing all the resources of a certain type.
"""
def __init__(self, fileOrPath):
"""Open a file
Args:
fileOrPath: Either an object supporting a ``read`` method, an
``os.PathLike`` object, or a string.
"""
self._resources = OrderedDict()
if hasattr(fileOrPath, "read"):
self.file = fileOrPath
else:
try:
# try reading from the resource fork (only works on OS X)
self.file = self.openResourceFork(fileOrPath)
self._readFile()
return
except (ResourceError, IOError):
# if it fails, use the data fork
self.file = self.openDataFork(fileOrPath)
self._readFile()
@staticmethod
def openResourceFork(path):
if hasattr(path, "__fspath__"): # support os.PathLike objects
path = path.__fspath__()
with open(path + "/..namedfork/rsrc", "rb") as resfork:
data = resfork.read()
infile = BytesIO(data)
infile.name = path
return infile
@staticmethod
def openDataFork(path):
with open(path, "rb") as datafork:
data = datafork.read()
infile = BytesIO(data)
infile.name = path
return infile
def _readFile(self):
self._readHeaderAndMap()
self._readTypeList()
def _read(self, numBytes, offset=None):
if offset is not None:
try:
self.file.seek(offset)
except OverflowError:
raise ResourceError("Failed to seek offset ('offset' is too large)")
if self.file.tell() != offset:
raise ResourceError("Failed to seek offset (reached EOF)")
try:
data = self.file.read(numBytes)
except OverflowError:
raise ResourceError("Cannot read resource ('numBytes' is too large)")
if len(data) != numBytes:
raise ResourceError("Cannot read resource (not enough data)")
return data
def _readHeaderAndMap(self):
self.file.seek(0)
headerData = self._read(ResourceForkHeaderSize)
sstruct.unpack(ResourceForkHeader, headerData, self)
# seek to resource map, skip reserved
mapOffset = self.mapOffset + 22
resourceMapData = self._read(ResourceMapHeaderSize, mapOffset)
sstruct.unpack(ResourceMapHeader, resourceMapData, self)
self.absTypeListOffset = self.mapOffset + self.typeListOffset
self.absNameListOffset = self.mapOffset + self.nameListOffset
def _readTypeList(self):
absTypeListOffset = self.absTypeListOffset
numTypesData = self._read(2, absTypeListOffset)
(self.numTypes,) = struct.unpack(">H", numTypesData)
absTypeListOffset2 = absTypeListOffset + 2
for i in range(self.numTypes + 1):
resTypeItemOffset = absTypeListOffset2 + ResourceTypeItemSize * i
resTypeItemData = self._read(ResourceTypeItemSize, resTypeItemOffset)
item = sstruct.unpack(ResourceTypeItem, resTypeItemData)
resType = tostr(item["type"], encoding="mac-roman")
refListOffset = absTypeListOffset + item["refListOffset"]
numRes = item["numRes"] + 1
resources = self._readReferenceList(resType, refListOffset, numRes)
self._resources[resType] = resources
def _readReferenceList(self, resType, refListOffset, numRes):
resources = []
for i in range(numRes):
refOffset = refListOffset + ResourceRefItemSize * i
refData = self._read(ResourceRefItemSize, refOffset)
res = Resource(resType)
res.decompile(refData, self)
resources.append(res)
return resources
def __getitem__(self, resType):
return self._resources[resType]
def __delitem__(self, resType):
del self._resources[resType]
def __setitem__(self, resType, resources):
self._resources[resType] = resources
def __len__(self):
return len(self._resources)
def __iter__(self):
return iter(self._resources)
def keys(self):
return self._resources.keys()
@property
def types(self):
"""A list of the types of resources in the resource fork."""
return list(self._resources.keys())
def countResources(self, resType):
"""Return the number of resources of a given type."""
try:
return len(self[resType])
except KeyError:
return 0
def getIndices(self, resType):
"""Returns a list of indices of resources of a given type."""
numRes = self.countResources(resType)
if numRes:
return list(range(1, numRes + 1))
else:
return []
def getNames(self, resType):
"""Return list of names of all resources of a given type."""
return [res.name for res in self.get(resType, []) if res.name is not None]
def getIndResource(self, resType, index):
"""Return resource of given type located at an index ranging from 1
to the number of resources for that type, or None if not found.
"""
if index < 1:
return None
try:
res = self[resType][index - 1]
except (KeyError, IndexError):
return None
return res
def getNamedResource(self, resType, name):
"""Return the named resource of given type, else return None."""
name = tostr(name, encoding="mac-roman")
for res in self.get(resType, []):
if res.name == name:
return res
return None
def close(self):
if not self.file.closed:
self.file.close()
class Resource(object):
"""Represents a resource stored within a resource fork.
Attributes:
type: resource type.
data: resource data.
id: ID.
name: resource name.
attr: attributes.
"""
def __init__(
self, resType=None, resData=None, resID=None, resName=None, resAttr=None
):
self.type = resType
self.data = resData
self.id = resID
self.name = resName
self.attr = resAttr
def decompile(self, refData, reader):
sstruct.unpack(ResourceRefItem, refData, self)
# interpret 3-byte dataOffset as (padded) ULONG to unpack it with struct
(self.dataOffset,) = struct.unpack(">L", bytesjoin([b"\0", self.dataOffset]))
absDataOffset = reader.dataOffset + self.dataOffset
(dataLength,) = struct.unpack(">L", reader._read(4, absDataOffset))
self.data = reader._read(dataLength)
if self.nameOffset == -1:
return
absNameOffset = reader.absNameListOffset + self.nameOffset
(nameLength,) = struct.unpack("B", reader._read(1, absNameOffset))
(name,) = struct.unpack(">%ss" % nameLength, reader._read(nameLength))
self.name = tostr(name, encoding="mac-roman")
ResourceForkHeader = """
> # big endian
dataOffset: L
mapOffset: L
dataLen: L
mapLen: L
"""
ResourceForkHeaderSize = sstruct.calcsize(ResourceForkHeader)
ResourceMapHeader = """
> # big endian
attr: H
typeListOffset: H
nameListOffset: H
"""
ResourceMapHeaderSize = sstruct.calcsize(ResourceMapHeader)
ResourceTypeItem = """
> # big endian
type: 4s
numRes: H
refListOffset: H
"""
ResourceTypeItemSize = sstruct.calcsize(ResourceTypeItem)
ResourceRefItem = """
> # big endian
id: h
nameOffset: h
attr: B
dataOffset: 3s
reserved: L
"""
ResourceRefItemSize = sstruct.calcsize(ResourceRefItem)

View File

@ -0,0 +1,681 @@
import collections.abc
import re
from typing import (
Any,
Callable,
Dict,
List,
Mapping,
MutableMapping,
Optional,
Sequence,
Type,
Union,
IO,
)
import warnings
from io import BytesIO
from datetime import datetime
from base64 import b64encode, b64decode
from numbers import Integral
from types import SimpleNamespace
from functools import singledispatch
from fontTools.misc import etree
from fontTools.misc.textTools import tostr
# By default, we
# - deserialize <data> elements as bytes and
# - serialize bytes as <data> elements.
# Before, on Python 2, we
# - deserialized <data> elements as plistlib.Data objects, in order to
# distinguish them from the built-in str type (which is bytes on python2)
# - serialized bytes as <string> elements (they must have only contained
# ASCII characters in this case)
# You can pass use_builtin_types=[True|False] to the load/dump etc. functions
# to enforce a specific treatment.
# NOTE that unicode type always maps to <string> element, and plistlib.Data
# always maps to <data> element, regardless of use_builtin_types.
USE_BUILTIN_TYPES = True
XML_DECLARATION = b"""<?xml version='1.0' encoding='UTF-8'?>"""
PLIST_DOCTYPE = (
b'<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" '
b'"http://www.apple.com/DTDs/PropertyList-1.0.dtd">'
)
# Date should conform to a subset of ISO 8601:
# YYYY '-' MM '-' DD 'T' HH ':' MM ':' SS 'Z'
_date_parser = re.compile(
r"(?P<year>\d\d\d\d)"
r"(?:-(?P<month>\d\d)"
r"(?:-(?P<day>\d\d)"
r"(?:T(?P<hour>\d\d)"
r"(?::(?P<minute>\d\d)"
r"(?::(?P<second>\d\d))"
r"?)?)?)?)?Z",
re.ASCII,
)
def _date_from_string(s: str) -> datetime:
order = ("year", "month", "day", "hour", "minute", "second")
m = _date_parser.match(s)
if m is None:
raise ValueError(f"Expected ISO 8601 date string, but got '{s:r}'.")
gd = m.groupdict()
lst = []
for key in order:
val = gd[key]
if val is None:
break
lst.append(int(val))
# NOTE: mypy doesn't know that lst is 6 elements long.
return datetime(*lst) # type:ignore
def _date_to_string(d: datetime) -> str:
return "%04d-%02d-%02dT%02d:%02d:%02dZ" % (
d.year,
d.month,
d.day,
d.hour,
d.minute,
d.second,
)
class Data:
"""Represents binary data when ``use_builtin_types=False.``
This class wraps binary data loaded from a plist file when the
``use_builtin_types`` argument to the loading function (:py:func:`fromtree`,
:py:func:`load`, :py:func:`loads`) is false.
The actual binary data is retrieved using the ``data`` attribute.
"""
def __init__(self, data: bytes) -> None:
if not isinstance(data, bytes):
raise TypeError("Expected bytes, found %s" % type(data).__name__)
self.data = data
@classmethod
def fromBase64(cls, data: Union[bytes, str]) -> "Data":
return cls(b64decode(data))
def asBase64(self, maxlinelength: int = 76, indent_level: int = 1) -> bytes:
return _encode_base64(
self.data, maxlinelength=maxlinelength, indent_level=indent_level
)
def __eq__(self, other: Any) -> bool:
if isinstance(other, self.__class__):
return self.data == other.data
elif isinstance(other, bytes):
return self.data == other
else:
return NotImplemented
def __repr__(self) -> str:
return "%s(%s)" % (self.__class__.__name__, repr(self.data))
def _encode_base64(
data: bytes, maxlinelength: Optional[int] = 76, indent_level: int = 1
) -> bytes:
data = b64encode(data)
if data and maxlinelength:
# split into multiple lines right-justified to 'maxlinelength' chars
indent = b"\n" + b" " * indent_level
max_length = max(16, maxlinelength - len(indent))
chunks = []
for i in range(0, len(data), max_length):
chunks.append(indent)
chunks.append(data[i : i + max_length])
chunks.append(indent)
data = b"".join(chunks)
return data
# Mypy does not support recursive type aliases as of 0.782, Pylance does.
# https://github.com/python/mypy/issues/731
# https://devblogs.microsoft.com/python/pylance-introduces-five-new-features-that-enable-type-magic-for-python-developers/#1-support-for-recursive-type-aliases
PlistEncodable = Union[
bool,
bytes,
Data,
datetime,
float,
Integral,
Mapping[str, Any],
Sequence[Any],
str,
]
class PlistTarget:
"""Event handler using the ElementTree Target API that can be
passed to a XMLParser to produce property list objects from XML.
It is based on the CPython plistlib module's _PlistParser class,
but does not use the expat parser.
>>> from fontTools.misc import etree
>>> parser = etree.XMLParser(target=PlistTarget())
>>> result = etree.XML(
... "<dict>"
... " <key>something</key>"
... " <string>blah</string>"
... "</dict>",
... parser=parser)
>>> result == {"something": "blah"}
True
Links:
https://github.com/python/cpython/blob/main/Lib/plistlib.py
http://lxml.de/parsing.html#the-target-parser-interface
"""
def __init__(
self,
use_builtin_types: Optional[bool] = None,
dict_type: Type[MutableMapping[str, Any]] = dict,
) -> None:
self.stack: List[PlistEncodable] = []
self.current_key: Optional[str] = None
self.root: Optional[PlistEncodable] = None
if use_builtin_types is None:
self._use_builtin_types = USE_BUILTIN_TYPES
else:
if use_builtin_types is False:
warnings.warn(
"Setting use_builtin_types to False is deprecated and will be "
"removed soon.",
DeprecationWarning,
)
self._use_builtin_types = use_builtin_types
self._dict_type = dict_type
def start(self, tag: str, attrib: Mapping[str, str]) -> None:
self._data: List[str] = []
handler = _TARGET_START_HANDLERS.get(tag)
if handler is not None:
handler(self)
def end(self, tag: str) -> None:
handler = _TARGET_END_HANDLERS.get(tag)
if handler is not None:
handler(self)
def data(self, data: str) -> None:
self._data.append(data)
def close(self) -> PlistEncodable:
if self.root is None:
raise ValueError("No root set.")
return self.root
# helpers
def add_object(self, value: PlistEncodable) -> None:
if self.current_key is not None:
stack_top = self.stack[-1]
if not isinstance(stack_top, collections.abc.MutableMapping):
raise ValueError("unexpected element: %r" % stack_top)
stack_top[self.current_key] = value
self.current_key = None
elif not self.stack:
# this is the root object
self.root = value
else:
stack_top = self.stack[-1]
if not isinstance(stack_top, list):
raise ValueError("unexpected element: %r" % stack_top)
stack_top.append(value)
def get_data(self) -> str:
data = "".join(self._data)
self._data = []
return data
# event handlers
def start_dict(self: PlistTarget) -> None:
d = self._dict_type()
self.add_object(d)
self.stack.append(d)
def end_dict(self: PlistTarget) -> None:
if self.current_key:
raise ValueError("missing value for key '%s'" % self.current_key)
self.stack.pop()
def end_key(self: PlistTarget) -> None:
if self.current_key or not isinstance(self.stack[-1], collections.abc.Mapping):
raise ValueError("unexpected key")
self.current_key = self.get_data()
def start_array(self: PlistTarget) -> None:
a: List[PlistEncodable] = []
self.add_object(a)
self.stack.append(a)
def end_array(self: PlistTarget) -> None:
self.stack.pop()
def end_true(self: PlistTarget) -> None:
self.add_object(True)
def end_false(self: PlistTarget) -> None:
self.add_object(False)
def end_integer(self: PlistTarget) -> None:
self.add_object(int(self.get_data()))
def end_real(self: PlistTarget) -> None:
self.add_object(float(self.get_data()))
def end_string(self: PlistTarget) -> None:
self.add_object(self.get_data())
def end_data(self: PlistTarget) -> None:
if self._use_builtin_types:
self.add_object(b64decode(self.get_data()))
else:
self.add_object(Data.fromBase64(self.get_data()))
def end_date(self: PlistTarget) -> None:
self.add_object(_date_from_string(self.get_data()))
_TARGET_START_HANDLERS: Dict[str, Callable[[PlistTarget], None]] = {
"dict": start_dict,
"array": start_array,
}
_TARGET_END_HANDLERS: Dict[str, Callable[[PlistTarget], None]] = {
"dict": end_dict,
"array": end_array,
"key": end_key,
"true": end_true,
"false": end_false,
"integer": end_integer,
"real": end_real,
"string": end_string,
"data": end_data,
"date": end_date,
}
# functions to build element tree from plist data
def _string_element(value: str, ctx: SimpleNamespace) -> etree.Element:
el = etree.Element("string")
el.text = value
return el
def _bool_element(value: bool, ctx: SimpleNamespace) -> etree.Element:
if value:
return etree.Element("true")
return etree.Element("false")
def _integer_element(value: int, ctx: SimpleNamespace) -> etree.Element:
if -1 << 63 <= value < 1 << 64:
el = etree.Element("integer")
el.text = "%d" % value
return el
raise OverflowError(value)
def _real_element(value: float, ctx: SimpleNamespace) -> etree.Element:
el = etree.Element("real")
el.text = repr(value)
return el
def _dict_element(
d: Mapping[str, PlistEncodable], ctx: SimpleNamespace
) -> etree.Element:
el = etree.Element("dict")
items = d.items()
if ctx.sort_keys:
items = sorted(items) # type: ignore
ctx.indent_level += 1
for key, value in items:
if not isinstance(key, str):
if ctx.skipkeys:
continue
raise TypeError("keys must be strings")
k = etree.SubElement(el, "key")
k.text = tostr(key, "utf-8")
el.append(_make_element(value, ctx))
ctx.indent_level -= 1
return el
def _array_element(
array: Sequence[PlistEncodable], ctx: SimpleNamespace
) -> etree.Element:
el = etree.Element("array")
if len(array) == 0:
return el
ctx.indent_level += 1
for value in array:
el.append(_make_element(value, ctx))
ctx.indent_level -= 1
return el
def _date_element(date: datetime, ctx: SimpleNamespace) -> etree.Element:
el = etree.Element("date")
el.text = _date_to_string(date)
return el
def _data_element(data: bytes, ctx: SimpleNamespace) -> etree.Element:
el = etree.Element("data")
# NOTE: mypy is confused about whether el.text should be str or bytes.
el.text = _encode_base64( # type: ignore
data,
maxlinelength=(76 if ctx.pretty_print else None),
indent_level=ctx.indent_level,
)
return el
def _string_or_data_element(raw_bytes: bytes, ctx: SimpleNamespace) -> etree.Element:
if ctx.use_builtin_types:
return _data_element(raw_bytes, ctx)
else:
try:
string = raw_bytes.decode(encoding="ascii", errors="strict")
except UnicodeDecodeError:
raise ValueError(
"invalid non-ASCII bytes; use unicode string instead: %r" % raw_bytes
)
return _string_element(string, ctx)
# The following is probably not entirely correct. The signature should take `Any`
# and return `NoReturn`. At the time of this writing, neither mypy nor Pyright
# can deal with singledispatch properly and will apply the signature of the base
# function to all others. Being slightly dishonest makes it type-check and return
# usable typing information for the optimistic case.
@singledispatch
def _make_element(value: PlistEncodable, ctx: SimpleNamespace) -> etree.Element:
raise TypeError("unsupported type: %s" % type(value))
_make_element.register(str)(_string_element)
_make_element.register(bool)(_bool_element)
_make_element.register(Integral)(_integer_element)
_make_element.register(float)(_real_element)
_make_element.register(collections.abc.Mapping)(_dict_element)
_make_element.register(list)(_array_element)
_make_element.register(tuple)(_array_element)
_make_element.register(datetime)(_date_element)
_make_element.register(bytes)(_string_or_data_element)
_make_element.register(bytearray)(_data_element)
_make_element.register(Data)(lambda v, ctx: _data_element(v.data, ctx))
# Public functions to create element tree from plist-compatible python
# data structures and viceversa, for use when (de)serializing GLIF xml.
def totree(
value: PlistEncodable,
sort_keys: bool = True,
skipkeys: bool = False,
use_builtin_types: Optional[bool] = None,
pretty_print: bool = True,
indent_level: int = 1,
) -> etree.Element:
"""Convert a value derived from a plist into an XML tree.
Args:
value: Any kind of value to be serialized to XML.
sort_keys: Whether keys of dictionaries should be sorted.
skipkeys (bool): Whether to silently skip non-string dictionary
keys.
use_builtin_types (bool): If true, byte strings will be
encoded in Base-64 and wrapped in a ``data`` tag; if
false, they will be either stored as ASCII strings or an
exception raised if they cannot be decoded as such. Defaults
to ``True`` if not present. Deprecated.
pretty_print (bool): Whether to indent the output.
indent_level (int): Level of indentation when serializing.
Returns: an ``etree`` ``Element`` object.
Raises:
``TypeError``
if non-string dictionary keys are serialized
and ``skipkeys`` is false.
``ValueError``
if non-ASCII binary data is present
and `use_builtin_types` is false.
"""
if use_builtin_types is None:
use_builtin_types = USE_BUILTIN_TYPES
else:
use_builtin_types = use_builtin_types
context = SimpleNamespace(
sort_keys=sort_keys,
skipkeys=skipkeys,
use_builtin_types=use_builtin_types,
pretty_print=pretty_print,
indent_level=indent_level,
)
return _make_element(value, context)
def fromtree(
tree: etree.Element,
use_builtin_types: Optional[bool] = None,
dict_type: Type[MutableMapping[str, Any]] = dict,
) -> Any:
"""Convert an XML tree to a plist structure.
Args:
tree: An ``etree`` ``Element``.
use_builtin_types: If True, binary data is deserialized to
bytes strings. If False, it is wrapped in :py:class:`Data`
objects. Defaults to True if not provided. Deprecated.
dict_type: What type to use for dictionaries.
Returns: An object (usually a dictionary).
"""
target = PlistTarget(use_builtin_types=use_builtin_types, dict_type=dict_type)
for action, element in etree.iterwalk(tree, events=("start", "end")):
if action == "start":
target.start(element.tag, element.attrib)
elif action == "end":
# if there are no children, parse the leaf's data
if not len(element):
# always pass str, not None
target.data(element.text or "")
target.end(element.tag)
return target.close()
# python3 plistlib API
def load(
fp: IO[bytes],
use_builtin_types: Optional[bool] = None,
dict_type: Type[MutableMapping[str, Any]] = dict,
) -> Any:
"""Load a plist file into an object.
Args:
fp: An opened file.
use_builtin_types: If True, binary data is deserialized to
bytes strings. If False, it is wrapped in :py:class:`Data`
objects. Defaults to True if not provided. Deprecated.
dict_type: What type to use for dictionaries.
Returns:
An object (usually a dictionary) representing the top level of
the plist file.
"""
if not hasattr(fp, "read"):
raise AttributeError("'%s' object has no attribute 'read'" % type(fp).__name__)
target = PlistTarget(use_builtin_types=use_builtin_types, dict_type=dict_type)
parser = etree.XMLParser(target=target)
result = etree.parse(fp, parser=parser)
# lxml returns the target object directly, while ElementTree wraps
# it as the root of an ElementTree object
try:
return result.getroot()
except AttributeError:
return result
def loads(
value: bytes,
use_builtin_types: Optional[bool] = None,
dict_type: Type[MutableMapping[str, Any]] = dict,
) -> Any:
"""Load a plist file from a string into an object.
Args:
value: A bytes string containing a plist.
use_builtin_types: If True, binary data is deserialized to
bytes strings. If False, it is wrapped in :py:class:`Data`
objects. Defaults to True if not provided. Deprecated.
dict_type: What type to use for dictionaries.
Returns:
An object (usually a dictionary) representing the top level of
the plist file.
"""
fp = BytesIO(value)
return load(fp, use_builtin_types=use_builtin_types, dict_type=dict_type)
def dump(
value: PlistEncodable,
fp: IO[bytes],
sort_keys: bool = True,
skipkeys: bool = False,
use_builtin_types: Optional[bool] = None,
pretty_print: bool = True,
) -> None:
"""Write a Python object to a plist file.
Args:
value: An object to write.
fp: A file opened for writing.
sort_keys (bool): Whether keys of dictionaries should be sorted.
skipkeys (bool): Whether to silently skip non-string dictionary
keys.
use_builtin_types (bool): If true, byte strings will be
encoded in Base-64 and wrapped in a ``data`` tag; if
false, they will be either stored as ASCII strings or an
exception raised if they cannot be represented. Defaults
pretty_print (bool): Whether to indent the output.
indent_level (int): Level of indentation when serializing.
Raises:
``TypeError``
if non-string dictionary keys are serialized
and ``skipkeys`` is false.
``ValueError``
if non-representable binary data is present
and `use_builtin_types` is false.
"""
if not hasattr(fp, "write"):
raise AttributeError("'%s' object has no attribute 'write'" % type(fp).__name__)
root = etree.Element("plist", version="1.0")
el = totree(
value,
sort_keys=sort_keys,
skipkeys=skipkeys,
use_builtin_types=use_builtin_types,
pretty_print=pretty_print,
)
root.append(el)
tree = etree.ElementTree(root)
# we write the doctype ourselves instead of using the 'doctype' argument
# of 'write' method, becuse lxml will force adding a '\n' even when
# pretty_print is False.
if pretty_print:
header = b"\n".join((XML_DECLARATION, PLIST_DOCTYPE, b""))
else:
header = XML_DECLARATION + PLIST_DOCTYPE
fp.write(header)
tree.write( # type: ignore
fp,
encoding="utf-8",
pretty_print=pretty_print,
xml_declaration=False,
)
def dumps(
value: PlistEncodable,
sort_keys: bool = True,
skipkeys: bool = False,
use_builtin_types: Optional[bool] = None,
pretty_print: bool = True,
) -> bytes:
"""Write a Python object to a string in plist format.
Args:
value: An object to write.
sort_keys (bool): Whether keys of dictionaries should be sorted.
skipkeys (bool): Whether to silently skip non-string dictionary
keys.
use_builtin_types (bool): If true, byte strings will be
encoded in Base-64 and wrapped in a ``data`` tag; if
false, they will be either stored as strings or an
exception raised if they cannot be represented. Defaults
pretty_print (bool): Whether to indent the output.
indent_level (int): Level of indentation when serializing.
Returns:
string: A plist representation of the Python object.
Raises:
``TypeError``
if non-string dictionary keys are serialized
and ``skipkeys`` is false.
``ValueError``
if non-representable binary data is present
and `use_builtin_types` is false.
"""
fp = BytesIO()
dump(
value,
fp,
sort_keys=sort_keys,
skipkeys=skipkeys,
use_builtin_types=use_builtin_types,
pretty_print=pretty_print,
)
return fp.getvalue()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,398 @@
from fontTools.misc.textTools import bytechr, byteord, bytesjoin, tobytes, tostr
from fontTools.misc import eexec
from .psOperators import (
PSOperators,
ps_StandardEncoding,
ps_array,
ps_boolean,
ps_dict,
ps_integer,
ps_literal,
ps_mark,
ps_name,
ps_operator,
ps_procedure,
ps_procmark,
ps_real,
ps_string,
)
import re
from collections.abc import Callable
from string import whitespace
import logging
log = logging.getLogger(__name__)
ps_special = b"()<>[]{}%" # / is one too, but we take care of that one differently
skipwhiteRE = re.compile(bytesjoin([b"[", whitespace, b"]*"]))
endofthingPat = bytesjoin([b"[^][(){}<>/%", whitespace, b"]*"])
endofthingRE = re.compile(endofthingPat)
commentRE = re.compile(b"%[^\n\r]*")
# XXX This not entirely correct as it doesn't allow *nested* embedded parens:
stringPat = rb"""
\(
(
(
[^()]* \ [()]
)
|
(
[^()]* \( [^()]* \)
)
)*
[^()]*
\)
"""
stringPat = b"".join(stringPat.split())
stringRE = re.compile(stringPat)
hexstringRE = re.compile(bytesjoin([b"<[", whitespace, b"0-9A-Fa-f]*>"]))
class PSTokenError(Exception):
pass
class PSError(Exception):
pass
class PSTokenizer(object):
def __init__(self, buf=b"", encoding="ascii"):
# Force self.buf to be a byte string
buf = tobytes(buf)
self.buf = buf
self.len = len(buf)
self.pos = 0
self.closed = False
self.encoding = encoding
def read(self, n=-1):
"""Read at most 'n' bytes from the buffer, or less if the read
hits EOF before obtaining 'n' bytes.
If 'n' is negative or omitted, read all data until EOF is reached.
"""
if self.closed:
raise ValueError("I/O operation on closed file")
if n is None or n < 0:
newpos = self.len
else:
newpos = min(self.pos + n, self.len)
r = self.buf[self.pos : newpos]
self.pos = newpos
return r
def close(self):
if not self.closed:
self.closed = True
del self.buf, self.pos
def getnexttoken(
self,
# localize some stuff, for performance
len=len,
ps_special=ps_special,
stringmatch=stringRE.match,
hexstringmatch=hexstringRE.match,
commentmatch=commentRE.match,
endmatch=endofthingRE.match,
):
self.skipwhite()
if self.pos >= self.len:
return None, None
pos = self.pos
buf = self.buf
char = bytechr(byteord(buf[pos]))
if char in ps_special:
if char in b"{}[]":
tokentype = "do_special"
token = char
elif char == b"%":
tokentype = "do_comment"
_, nextpos = commentmatch(buf, pos).span()
token = buf[pos:nextpos]
elif char == b"(":
tokentype = "do_string"
m = stringmatch(buf, pos)
if m is None:
raise PSTokenError("bad string at character %d" % pos)
_, nextpos = m.span()
token = buf[pos:nextpos]
elif char == b"<":
tokentype = "do_hexstring"
m = hexstringmatch(buf, pos)
if m is None:
raise PSTokenError("bad hexstring at character %d" % pos)
_, nextpos = m.span()
token = buf[pos:nextpos]
else:
raise PSTokenError("bad token at character %d" % pos)
else:
if char == b"/":
tokentype = "do_literal"
m = endmatch(buf, pos + 1)
else:
tokentype = ""
m = endmatch(buf, pos)
if m is None:
raise PSTokenError("bad token at character %d" % pos)
_, nextpos = m.span()
token = buf[pos:nextpos]
self.pos = pos + len(token)
token = tostr(token, encoding=self.encoding)
return tokentype, token
def skipwhite(self, whitematch=skipwhiteRE.match):
_, nextpos = whitematch(self.buf, self.pos).span()
self.pos = nextpos
def starteexec(self):
self.pos = self.pos + 1
self.dirtybuf = self.buf[self.pos :]
self.buf, R = eexec.decrypt(self.dirtybuf, 55665)
self.len = len(self.buf)
self.pos = 4
def stopeexec(self):
if not hasattr(self, "dirtybuf"):
return
self.buf = self.dirtybuf
del self.dirtybuf
class PSInterpreter(PSOperators):
def __init__(self, encoding="ascii"):
systemdict = {}
userdict = {}
self.encoding = encoding
self.dictstack = [systemdict, userdict]
self.stack = []
self.proclevel = 0
self.procmark = ps_procmark()
self.fillsystemdict()
def fillsystemdict(self):
systemdict = self.dictstack[0]
systemdict["["] = systemdict["mark"] = self.mark = ps_mark()
systemdict["]"] = ps_operator("]", self.do_makearray)
systemdict["true"] = ps_boolean(1)
systemdict["false"] = ps_boolean(0)
systemdict["StandardEncoding"] = ps_array(ps_StandardEncoding)
systemdict["FontDirectory"] = ps_dict({})
self.suckoperators(systemdict, self.__class__)
def suckoperators(self, systemdict, klass):
for name in dir(klass):
attr = getattr(self, name)
if isinstance(attr, Callable) and name[:3] == "ps_":
name = name[3:]
systemdict[name] = ps_operator(name, attr)
for baseclass in klass.__bases__:
self.suckoperators(systemdict, baseclass)
def interpret(self, data, getattr=getattr):
tokenizer = self.tokenizer = PSTokenizer(data, self.encoding)
getnexttoken = tokenizer.getnexttoken
do_token = self.do_token
handle_object = self.handle_object
try:
while 1:
tokentype, token = getnexttoken()
if not token:
break
if tokentype:
handler = getattr(self, tokentype)
object = handler(token)
else:
object = do_token(token)
if object is not None:
handle_object(object)
tokenizer.close()
self.tokenizer = None
except:
if self.tokenizer is not None:
log.debug(
"ps error:\n"
"- - - - - - -\n"
"%s\n"
">>>\n"
"%s\n"
"- - - - - - -",
self.tokenizer.buf[self.tokenizer.pos - 50 : self.tokenizer.pos],
self.tokenizer.buf[self.tokenizer.pos : self.tokenizer.pos + 50],
)
raise
def handle_object(self, object):
if not (self.proclevel or object.literal or object.type == "proceduretype"):
if object.type != "operatortype":
object = self.resolve_name(object.value)
if object.literal:
self.push(object)
else:
if object.type == "proceduretype":
self.call_procedure(object)
else:
object.function()
else:
self.push(object)
def call_procedure(self, proc):
handle_object = self.handle_object
for item in proc.value:
handle_object(item)
def resolve_name(self, name):
dictstack = self.dictstack
for i in range(len(dictstack) - 1, -1, -1):
if name in dictstack[i]:
return dictstack[i][name]
raise PSError("name error: " + str(name))
def do_token(
self,
token,
int=int,
float=float,
ps_name=ps_name,
ps_integer=ps_integer,
ps_real=ps_real,
):
try:
num = int(token)
except (ValueError, OverflowError):
try:
num = float(token)
except (ValueError, OverflowError):
if "#" in token:
hashpos = token.find("#")
try:
base = int(token[:hashpos])
num = int(token[hashpos + 1 :], base)
except (ValueError, OverflowError):
return ps_name(token)
else:
return ps_integer(num)
else:
return ps_name(token)
else:
return ps_real(num)
else:
return ps_integer(num)
def do_comment(self, token):
pass
def do_literal(self, token):
return ps_literal(token[1:])
def do_string(self, token):
return ps_string(token[1:-1])
def do_hexstring(self, token):
hexStr = "".join(token[1:-1].split())
if len(hexStr) % 2:
hexStr = hexStr + "0"
cleanstr = []
for i in range(0, len(hexStr), 2):
cleanstr.append(chr(int(hexStr[i : i + 2], 16)))
cleanstr = "".join(cleanstr)
return ps_string(cleanstr)
def do_special(self, token):
if token == "{":
self.proclevel = self.proclevel + 1
return self.procmark
elif token == "}":
proc = []
while 1:
topobject = self.pop()
if topobject == self.procmark:
break
proc.append(topobject)
self.proclevel = self.proclevel - 1
proc.reverse()
return ps_procedure(proc)
elif token == "[":
return self.mark
elif token == "]":
return ps_name("]")
else:
raise PSTokenError("huh?")
def push(self, object):
self.stack.append(object)
def pop(self, *types):
stack = self.stack
if not stack:
raise PSError("stack underflow")
object = stack[-1]
if types:
if object.type not in types:
raise PSError(
"typecheck, expected %s, found %s" % (repr(types), object.type)
)
del stack[-1]
return object
def do_makearray(self):
array = []
while 1:
topobject = self.pop()
if topobject == self.mark:
break
array.append(topobject)
array.reverse()
self.push(ps_array(array))
def close(self):
"""Remove circular references."""
del self.stack
del self.dictstack
def unpack_item(item):
tp = type(item.value)
if tp == dict:
newitem = {}
for key, value in item.value.items():
newitem[key] = unpack_item(value)
elif tp == list:
newitem = [None] * len(item.value)
for i in range(len(item.value)):
newitem[i] = unpack_item(item.value[i])
if item.type == "proceduretype":
newitem = tuple(newitem)
else:
newitem = item.value
return newitem
def suckfont(data, encoding="ascii"):
m = re.search(rb"/FontName\s+/([^ \t\n\r]+)\s+def", data)
if m:
fontName = m.group(1)
fontName = fontName.decode()
else:
fontName = None
interpreter = PSInterpreter(encoding=encoding)
interpreter.interpret(
b"/Helvetica 4 dict dup /Encoding StandardEncoding put definefont pop"
)
interpreter.interpret(data)
fontdir = interpreter.dictstack[0]["FontDirectory"].value
if fontName in fontdir:
rawfont = fontdir[fontName]
else:
# fall back, in case fontName wasn't found
fontNames = list(fontdir.keys())
if len(fontNames) > 1:
fontNames.remove("Helvetica")
fontNames.sort()
rawfont = fontdir[fontNames[0]]
interpreter.close()
return unpack_item(rawfont)

View File

@ -0,0 +1,572 @@
_accessstrings = {0: "", 1: "readonly", 2: "executeonly", 3: "noaccess"}
class ps_object(object):
literal = 1
access = 0
value = None
def __init__(self, value):
self.value = value
self.type = self.__class__.__name__[3:] + "type"
def __repr__(self):
return "<%s %s>" % (self.__class__.__name__[3:], repr(self.value))
class ps_operator(ps_object):
literal = 0
def __init__(self, name, function):
self.name = name
self.function = function
self.type = self.__class__.__name__[3:] + "type"
def __repr__(self):
return "<operator %s>" % self.name
class ps_procedure(ps_object):
literal = 0
def __repr__(self):
return "<procedure>"
def __str__(self):
psstring = "{"
for i in range(len(self.value)):
if i:
psstring = psstring + " " + str(self.value[i])
else:
psstring = psstring + str(self.value[i])
return psstring + "}"
class ps_name(ps_object):
literal = 0
def __str__(self):
if self.literal:
return "/" + self.value
else:
return self.value
class ps_literal(ps_object):
def __str__(self):
return "/" + self.value
class ps_array(ps_object):
def __str__(self):
psstring = "["
for i in range(len(self.value)):
item = self.value[i]
access = _accessstrings[item.access]
if access:
access = " " + access
if i:
psstring = psstring + " " + str(item) + access
else:
psstring = psstring + str(item) + access
return psstring + "]"
def __repr__(self):
return "<array>"
_type1_pre_eexec_order = [
"FontInfo",
"FontName",
"Encoding",
"PaintType",
"FontType",
"FontMatrix",
"FontBBox",
"UniqueID",
"Metrics",
"StrokeWidth",
]
_type1_fontinfo_order = [
"version",
"Notice",
"FullName",
"FamilyName",
"Weight",
"ItalicAngle",
"isFixedPitch",
"UnderlinePosition",
"UnderlineThickness",
]
_type1_post_eexec_order = ["Private", "CharStrings", "FID"]
def _type1_item_repr(key, value):
psstring = ""
access = _accessstrings[value.access]
if access:
access = access + " "
if key == "CharStrings":
psstring = psstring + "/%s %s def\n" % (
key,
_type1_CharString_repr(value.value),
)
elif key == "Encoding":
psstring = psstring + _type1_Encoding_repr(value, access)
else:
psstring = psstring + "/%s %s %sdef\n" % (str(key), str(value), access)
return psstring
def _type1_Encoding_repr(encoding, access):
encoding = encoding.value
psstring = "/Encoding 256 array\n0 1 255 {1 index exch /.notdef put} for\n"
for i in range(256):
name = encoding[i].value
if name != ".notdef":
psstring = psstring + "dup %d /%s put\n" % (i, name)
return psstring + access + "def\n"
def _type1_CharString_repr(charstrings):
items = sorted(charstrings.items())
return "xxx"
class ps_font(ps_object):
def __str__(self):
psstring = "%d dict dup begin\n" % len(self.value)
for key in _type1_pre_eexec_order:
try:
value = self.value[key]
except KeyError:
pass
else:
psstring = psstring + _type1_item_repr(key, value)
items = sorted(self.value.items())
for key, value in items:
if key not in _type1_pre_eexec_order + _type1_post_eexec_order:
psstring = psstring + _type1_item_repr(key, value)
psstring = psstring + "currentdict end\ncurrentfile eexec\ndup "
for key in _type1_post_eexec_order:
try:
value = self.value[key]
except KeyError:
pass
else:
psstring = psstring + _type1_item_repr(key, value)
return (
psstring
+ "dup/FontName get exch definefont pop\nmark currentfile closefile\n"
+ 8 * (64 * "0" + "\n")
+ "cleartomark"
+ "\n"
)
def __repr__(self):
return "<font>"
class ps_file(ps_object):
pass
class ps_dict(ps_object):
def __str__(self):
psstring = "%d dict dup begin\n" % len(self.value)
items = sorted(self.value.items())
for key, value in items:
access = _accessstrings[value.access]
if access:
access = access + " "
psstring = psstring + "/%s %s %sdef\n" % (str(key), str(value), access)
return psstring + "end "
def __repr__(self):
return "<dict>"
class ps_mark(ps_object):
def __init__(self):
self.value = "mark"
self.type = self.__class__.__name__[3:] + "type"
class ps_procmark(ps_object):
def __init__(self):
self.value = "procmark"
self.type = self.__class__.__name__[3:] + "type"
class ps_null(ps_object):
def __init__(self):
self.type = self.__class__.__name__[3:] + "type"
class ps_boolean(ps_object):
def __str__(self):
if self.value:
return "true"
else:
return "false"
class ps_string(ps_object):
def __str__(self):
return "(%s)" % repr(self.value)[1:-1]
class ps_integer(ps_object):
def __str__(self):
return repr(self.value)
class ps_real(ps_object):
def __str__(self):
return repr(self.value)
class PSOperators(object):
def ps_def(self):
obj = self.pop()
name = self.pop()
self.dictstack[-1][name.value] = obj
def ps_bind(self):
proc = self.pop("proceduretype")
self.proc_bind(proc)
self.push(proc)
def proc_bind(self, proc):
for i in range(len(proc.value)):
item = proc.value[i]
if item.type == "proceduretype":
self.proc_bind(item)
else:
if not item.literal:
try:
obj = self.resolve_name(item.value)
except:
pass
else:
if obj.type == "operatortype":
proc.value[i] = obj
def ps_exch(self):
if len(self.stack) < 2:
raise RuntimeError("stack underflow")
obj1 = self.pop()
obj2 = self.pop()
self.push(obj1)
self.push(obj2)
def ps_dup(self):
if not self.stack:
raise RuntimeError("stack underflow")
self.push(self.stack[-1])
def ps_exec(self):
obj = self.pop()
if obj.type == "proceduretype":
self.call_procedure(obj)
else:
self.handle_object(obj)
def ps_count(self):
self.push(ps_integer(len(self.stack)))
def ps_eq(self):
any1 = self.pop()
any2 = self.pop()
self.push(ps_boolean(any1.value == any2.value))
def ps_ne(self):
any1 = self.pop()
any2 = self.pop()
self.push(ps_boolean(any1.value != any2.value))
def ps_cvx(self):
obj = self.pop()
obj.literal = 0
self.push(obj)
def ps_matrix(self):
matrix = [
ps_real(1.0),
ps_integer(0),
ps_integer(0),
ps_real(1.0),
ps_integer(0),
ps_integer(0),
]
self.push(ps_array(matrix))
def ps_string(self):
num = self.pop("integertype").value
self.push(ps_string("\0" * num))
def ps_type(self):
obj = self.pop()
self.push(ps_string(obj.type))
def ps_store(self):
value = self.pop()
key = self.pop()
name = key.value
for i in range(len(self.dictstack) - 1, -1, -1):
if name in self.dictstack[i]:
self.dictstack[i][name] = value
break
self.dictstack[-1][name] = value
def ps_where(self):
name = self.pop()
# XXX
self.push(ps_boolean(0))
def ps_systemdict(self):
self.push(ps_dict(self.dictstack[0]))
def ps_userdict(self):
self.push(ps_dict(self.dictstack[1]))
def ps_currentdict(self):
self.push(ps_dict(self.dictstack[-1]))
def ps_currentfile(self):
self.push(ps_file(self.tokenizer))
def ps_eexec(self):
f = self.pop("filetype").value
f.starteexec()
def ps_closefile(self):
f = self.pop("filetype").value
f.skipwhite()
f.stopeexec()
def ps_cleartomark(self):
obj = self.pop()
while obj != self.mark:
obj = self.pop()
def ps_readstring(self, ps_boolean=ps_boolean, len=len):
s = self.pop("stringtype")
oldstr = s.value
f = self.pop("filetype")
# pad = file.value.read(1)
# for StringIO, this is faster
f.value.pos = f.value.pos + 1
newstr = f.value.read(len(oldstr))
s.value = newstr
self.push(s)
self.push(ps_boolean(len(oldstr) == len(newstr)))
def ps_known(self):
key = self.pop()
d = self.pop("dicttype", "fonttype")
self.push(ps_boolean(key.value in d.value))
def ps_if(self):
proc = self.pop("proceduretype")
if self.pop("booleantype").value:
self.call_procedure(proc)
def ps_ifelse(self):
proc2 = self.pop("proceduretype")
proc1 = self.pop("proceduretype")
if self.pop("booleantype").value:
self.call_procedure(proc1)
else:
self.call_procedure(proc2)
def ps_readonly(self):
obj = self.pop()
if obj.access < 1:
obj.access = 1
self.push(obj)
def ps_executeonly(self):
obj = self.pop()
if obj.access < 2:
obj.access = 2
self.push(obj)
def ps_noaccess(self):
obj = self.pop()
if obj.access < 3:
obj.access = 3
self.push(obj)
def ps_not(self):
obj = self.pop("booleantype", "integertype")
if obj.type == "booleantype":
self.push(ps_boolean(not obj.value))
else:
self.push(ps_integer(~obj.value))
def ps_print(self):
str = self.pop("stringtype")
print("PS output --->", str.value)
def ps_anchorsearch(self):
seek = self.pop("stringtype")
s = self.pop("stringtype")
seeklen = len(seek.value)
if s.value[:seeklen] == seek.value:
self.push(ps_string(s.value[seeklen:]))
self.push(seek)
self.push(ps_boolean(1))
else:
self.push(s)
self.push(ps_boolean(0))
def ps_array(self):
num = self.pop("integertype")
array = ps_array([None] * num.value)
self.push(array)
def ps_astore(self):
array = self.pop("arraytype")
for i in range(len(array.value) - 1, -1, -1):
array.value[i] = self.pop()
self.push(array)
def ps_load(self):
name = self.pop()
self.push(self.resolve_name(name.value))
def ps_put(self):
obj1 = self.pop()
obj2 = self.pop()
obj3 = self.pop("arraytype", "dicttype", "stringtype", "proceduretype")
tp = obj3.type
if tp == "arraytype" or tp == "proceduretype":
obj3.value[obj2.value] = obj1
elif tp == "dicttype":
obj3.value[obj2.value] = obj1
elif tp == "stringtype":
index = obj2.value
obj3.value = obj3.value[:index] + chr(obj1.value) + obj3.value[index + 1 :]
def ps_get(self):
obj1 = self.pop()
if obj1.value == "Encoding":
pass
obj2 = self.pop(
"arraytype", "dicttype", "stringtype", "proceduretype", "fonttype"
)
tp = obj2.type
if tp in ("arraytype", "proceduretype"):
self.push(obj2.value[obj1.value])
elif tp in ("dicttype", "fonttype"):
self.push(obj2.value[obj1.value])
elif tp == "stringtype":
self.push(ps_integer(ord(obj2.value[obj1.value])))
else:
assert False, "shouldn't get here"
def ps_getinterval(self):
obj1 = self.pop("integertype")
obj2 = self.pop("integertype")
obj3 = self.pop("arraytype", "stringtype")
tp = obj3.type
if tp == "arraytype":
self.push(ps_array(obj3.value[obj2.value : obj2.value + obj1.value]))
elif tp == "stringtype":
self.push(ps_string(obj3.value[obj2.value : obj2.value + obj1.value]))
def ps_putinterval(self):
obj1 = self.pop("arraytype", "stringtype")
obj2 = self.pop("integertype")
obj3 = self.pop("arraytype", "stringtype")
tp = obj3.type
if tp == "arraytype":
obj3.value[obj2.value : obj2.value + len(obj1.value)] = obj1.value
elif tp == "stringtype":
newstr = obj3.value[: obj2.value]
newstr = newstr + obj1.value
newstr = newstr + obj3.value[obj2.value + len(obj1.value) :]
obj3.value = newstr
def ps_cvn(self):
self.push(ps_name(self.pop("stringtype").value))
def ps_index(self):
n = self.pop("integertype").value
if n < 0:
raise RuntimeError("index may not be negative")
self.push(self.stack[-1 - n])
def ps_for(self):
proc = self.pop("proceduretype")
limit = self.pop("integertype", "realtype").value
increment = self.pop("integertype", "realtype").value
i = self.pop("integertype", "realtype").value
while 1:
if increment > 0:
if i > limit:
break
else:
if i < limit:
break
if type(i) == type(0.0):
self.push(ps_real(i))
else:
self.push(ps_integer(i))
self.call_procedure(proc)
i = i + increment
def ps_forall(self):
proc = self.pop("proceduretype")
obj = self.pop("arraytype", "stringtype", "dicttype")
tp = obj.type
if tp == "arraytype":
for item in obj.value:
self.push(item)
self.call_procedure(proc)
elif tp == "stringtype":
for item in obj.value:
self.push(ps_integer(ord(item)))
self.call_procedure(proc)
elif tp == "dicttype":
for key, value in obj.value.items():
self.push(ps_name(key))
self.push(value)
self.call_procedure(proc)
def ps_definefont(self):
font = self.pop("dicttype")
name = self.pop()
font = ps_font(font.value)
self.dictstack[0]["FontDirectory"].value[name.value] = font
self.push(font)
def ps_findfont(self):
name = self.pop()
font = self.dictstack[0]["FontDirectory"].value[name.value]
self.push(font)
def ps_pop(self):
self.pop()
def ps_dict(self):
self.pop("integertype")
self.push(ps_dict({}))
def ps_begin(self):
self.dictstack.append(self.pop("dicttype").value)
def ps_end(self):
if len(self.dictstack) > 2:
del self.dictstack[-1]
else:
raise RuntimeError("dictstack underflow")
notdef = ".notdef"
from fontTools.encodings.StandardEncoding import StandardEncoding
ps_StandardEncoding = list(map(ps_name, StandardEncoding))

View File

@ -0,0 +1,96 @@
"""Python 2/3 compat layer leftovers."""
import decimal as _decimal
import math as _math
import warnings
from contextlib import redirect_stderr, redirect_stdout
from io import BytesIO
from io import StringIO as UnicodeIO
from types import SimpleNamespace
from .textTools import Tag, bytechr, byteord, bytesjoin, strjoin, tobytes, tostr
warnings.warn(
"The py23 module has been deprecated and will be removed in a future release. "
"Please update your code.",
DeprecationWarning,
)
__all__ = [
"basestring",
"bytechr",
"byteord",
"BytesIO",
"bytesjoin",
"open",
"Py23Error",
"range",
"RecursionError",
"round",
"SimpleNamespace",
"StringIO",
"strjoin",
"Tag",
"tobytes",
"tostr",
"tounicode",
"unichr",
"unicode",
"UnicodeIO",
"xrange",
"zip",
]
class Py23Error(NotImplementedError):
pass
RecursionError = RecursionError
StringIO = UnicodeIO
basestring = str
isclose = _math.isclose
isfinite = _math.isfinite
open = open
range = range
round = round3 = round
unichr = chr
unicode = str
zip = zip
tounicode = tostr
def xrange(*args, **kwargs):
raise Py23Error("'xrange' is not defined. Use 'range' instead.")
def round2(number, ndigits=None):
"""
Implementation of Python 2 built-in round() function.
Rounds a number to a given precision in decimal digits (default
0 digits). The result is a floating point number. Values are rounded
to the closest multiple of 10 to the power minus ndigits; if two
multiples are equally close, rounding is done away from 0.
ndigits may be negative.
See Python 2 documentation:
https://docs.python.org/2/library/functions.html?highlight=round#round
"""
if ndigits is None:
ndigits = 0
if ndigits < 0:
exponent = 10 ** (-ndigits)
quotient, remainder = divmod(number, exponent)
if remainder >= exponent // 2 and number >= 0:
quotient += 1
return float(quotient * exponent)
else:
exponent = _decimal.Decimal("10") ** (-ndigits)
d = _decimal.Decimal.from_float(number).quantize(
exponent, rounding=_decimal.ROUND_HALF_UP
)
return float(d)

View File

@ -0,0 +1,110 @@
"""
Various round-to-integer helpers.
"""
import math
import functools
import logging
log = logging.getLogger(__name__)
__all__ = [
"noRound",
"otRound",
"maybeRound",
"roundFunc",
"nearestMultipleShortestRepr",
]
def noRound(value):
return value
def otRound(value):
"""Round float value to nearest integer towards ``+Infinity``.
The OpenType spec (in the section on `"normalization" of OpenType Font Variations <https://docs.microsoft.com/en-us/typography/opentype/spec/otvaroverview#coordinate-scales-and-normalization>`_)
defines the required method for converting floating point values to
fixed-point. In particular it specifies the following rounding strategy:
for fractional values of 0.5 and higher, take the next higher integer;
for other fractional values, truncate.
This function rounds the floating-point value according to this strategy
in preparation for conversion to fixed-point.
Args:
value (float): The input floating-point value.
Returns
float: The rounded value.
"""
# See this thread for how we ended up with this implementation:
# https://github.com/fonttools/fonttools/issues/1248#issuecomment-383198166
return int(math.floor(value + 0.5))
def maybeRound(v, tolerance, round=otRound):
rounded = round(v)
return rounded if abs(rounded - v) <= tolerance else v
def roundFunc(tolerance, round=otRound):
if tolerance < 0:
raise ValueError("Rounding tolerance must be positive")
if tolerance == 0:
return noRound
if tolerance >= 0.5:
return round
return functools.partial(maybeRound, tolerance=tolerance, round=round)
def nearestMultipleShortestRepr(value: float, factor: float) -> str:
"""Round to nearest multiple of factor and return shortest decimal representation.
This chooses the float that is closer to a multiple of the given factor while
having the shortest decimal representation (the least number of fractional decimal
digits).
For example, given the following:
>>> nearestMultipleShortestRepr(-0.61883544921875, 1.0/(1<<14))
'-0.61884'
Useful when you need to serialize or print a fixed-point number (or multiples
thereof, such as F2Dot14 fractions of 180 degrees in COLRv1 PaintRotate) in
a human-readable form.
Args:
value (value): The value to be rounded and serialized.
factor (float): The value which the result is a close multiple of.
Returns:
str: A compact string representation of the value.
"""
if not value:
return "0.0"
value = otRound(value / factor) * factor
eps = 0.5 * factor
lo = value - eps
hi = value + eps
# If the range of valid choices spans an integer, return the integer.
if int(lo) != int(hi):
return str(float(round(value)))
fmt = "%.8f"
lo = fmt % lo
hi = fmt % hi
assert len(lo) == len(hi) and lo != hi
for i in range(len(lo)):
if lo[i] != hi[i]:
break
period = lo.find(".")
assert period < i
fmt = "%%.%df" % (i - period)
return fmt % value

View File

@ -0,0 +1,231 @@
"""sstruct.py -- SuperStruct
Higher level layer on top of the struct module, enabling to
bind names to struct elements. The interface is similar to
struct, except the objects passed and returned are not tuples
(or argument lists), but dictionaries or instances.
Just like struct, we use fmt strings to describe a data
structure, except we use one line per element. Lines are
separated by newlines or semi-colons. Each line contains
either one of the special struct characters ('@', '=', '<',
'>' or '!') or a 'name:formatchar' combo (eg. 'myFloat:f').
Repetitions, like the struct module offers them are not useful
in this context, except for fixed length strings (eg. 'myInt:5h'
is not allowed but 'myString:5s' is). The 'x' fmt character
(pad byte) is treated as 'special', since it is by definition
anonymous. Extra whitespace is allowed everywhere.
The sstruct module offers one feature that the "normal" struct
module doesn't: support for fixed point numbers. These are spelled
as "n.mF", where n is the number of bits before the point, and m
the number of bits after the point. Fixed point numbers get
converted to floats.
pack(fmt, object):
'object' is either a dictionary or an instance (or actually
anything that has a __dict__ attribute). If it is a dictionary,
its keys are used for names. If it is an instance, it's
attributes are used to grab struct elements from. Returns
a string containing the data.
unpack(fmt, data, object=None)
If 'object' is omitted (or None), a new dictionary will be
returned. If 'object' is a dictionary, it will be used to add
struct elements to. If it is an instance (or in fact anything
that has a __dict__ attribute), an attribute will be added for
each struct element. In the latter two cases, 'object' itself
is returned.
unpack2(fmt, data, object=None)
Convenience function. Same as unpack, except data may be longer
than needed. The returned value is a tuple: (object, leftoverdata).
calcsize(fmt)
like struct.calcsize(), but uses our own fmt strings:
it returns the size of the data in bytes.
"""
from fontTools.misc.fixedTools import fixedToFloat as fi2fl, floatToFixed as fl2fi
from fontTools.misc.textTools import tobytes, tostr
import struct
import re
__version__ = "1.2"
__copyright__ = "Copyright 1998, Just van Rossum <just@letterror.com>"
class Error(Exception):
pass
def pack(fmt, obj):
formatstring, names, fixes = getformat(fmt, keep_pad_byte=True)
elements = []
if not isinstance(obj, dict):
obj = obj.__dict__
string_index = formatstring
if formatstring.startswith(">"):
string_index = formatstring[1:]
for ix, name in enumerate(names.keys()):
value = obj[name]
if name in fixes:
# fixed point conversion
value = fl2fi(value, fixes[name])
elif isinstance(value, str):
value = tobytes(value)
elements.append(value)
# Check it fits
try:
struct.pack(names[name], value)
except Exception as e:
raise ValueError(
"Value %s does not fit in format %s for %s" % (value, names[name], name)
) from e
data = struct.pack(*(formatstring,) + tuple(elements))
return data
def unpack(fmt, data, obj=None):
if obj is None:
obj = {}
data = tobytes(data)
formatstring, names, fixes = getformat(fmt)
if isinstance(obj, dict):
d = obj
else:
d = obj.__dict__
elements = struct.unpack(formatstring, data)
for i in range(len(names)):
name = list(names.keys())[i]
value = elements[i]
if name in fixes:
# fixed point conversion
value = fi2fl(value, fixes[name])
elif isinstance(value, bytes):
try:
value = tostr(value)
except UnicodeDecodeError:
pass
d[name] = value
return obj
def unpack2(fmt, data, obj=None):
length = calcsize(fmt)
return unpack(fmt, data[:length], obj), data[length:]
def calcsize(fmt):
formatstring, names, fixes = getformat(fmt)
return struct.calcsize(formatstring)
# matches "name:formatchar" (whitespace is allowed)
_elementRE = re.compile(
r"\s*" # whitespace
r"([A-Za-z_][A-Za-z_0-9]*)" # name (python identifier)
r"\s*:\s*" # whitespace : whitespace
r"([xcbB?hHiIlLqQfd]|" # formatchar...
r"[0-9]+[ps]|" # ...formatchar...
r"([0-9]+)\.([0-9]+)(F))" # ...formatchar
r"\s*" # whitespace
r"(#.*)?$" # [comment] + end of string
)
# matches the special struct fmt chars and 'x' (pad byte)
_extraRE = re.compile(r"\s*([x@=<>!])\s*(#.*)?$")
# matches an "empty" string, possibly containing whitespace and/or a comment
_emptyRE = re.compile(r"\s*(#.*)?$")
_fixedpointmappings = {8: "b", 16: "h", 32: "l"}
_formatcache = {}
def getformat(fmt, keep_pad_byte=False):
fmt = tostr(fmt, encoding="ascii")
try:
formatstring, names, fixes = _formatcache[fmt]
except KeyError:
lines = re.split("[\n;]", fmt)
formatstring = ""
names = {}
fixes = {}
for line in lines:
if _emptyRE.match(line):
continue
m = _extraRE.match(line)
if m:
formatchar = m.group(1)
if formatchar != "x" and formatstring:
raise Error("a special fmt char must be first")
else:
m = _elementRE.match(line)
if not m:
raise Error("syntax error in fmt: '%s'" % line)
name = m.group(1)
formatchar = m.group(2)
if keep_pad_byte or formatchar != "x":
names[name] = formatchar
if m.group(3):
# fixed point
before = int(m.group(3))
after = int(m.group(4))
bits = before + after
if bits not in [8, 16, 32]:
raise Error("fixed point must be 8, 16 or 32 bits long")
formatchar = _fixedpointmappings[bits]
names[name] = formatchar
assert m.group(5) == "F"
fixes[name] = after
formatstring += formatchar
_formatcache[fmt] = formatstring, names, fixes
return formatstring, names, fixes
def _test():
fmt = """
# comments are allowed
> # big endian (see documentation for struct)
# empty lines are allowed:
ashort: h
along: l
abyte: b # a byte
achar: c
astr: 5s
afloat: f; adouble: d # multiple "statements" are allowed
afixed: 16.16F
abool: ?
apad: x
"""
print("size:", calcsize(fmt))
class foo(object):
pass
i = foo()
i.ashort = 0x7FFF
i.along = 0x7FFFFFFF
i.abyte = 0x7F
i.achar = "a"
i.astr = "12345"
i.afloat = 0.5
i.adouble = 0.5
i.afixed = 1.5
i.abool = True
data = pack(fmt, i)
print("data:", repr(data))
print(unpack(fmt, data))
i2 = foo()
unpack(fmt, data, i2)
print(vars(i2))
if __name__ == "__main__":
_test()

View File

@ -0,0 +1,247 @@
from fontTools.pens.basePen import BasePen
from functools import partial
from itertools import count
import sympy as sp
import sys
n = 3 # Max Bezier degree; 3 for cubic, 2 for quadratic
t, x, y = sp.symbols("t x y", real=True)
c = sp.symbols("c", real=False) # Complex representation instead of x/y
X = tuple(sp.symbols("x:%d" % (n + 1), real=True))
Y = tuple(sp.symbols("y:%d" % (n + 1), real=True))
P = tuple(zip(*(sp.symbols("p:%d[%s]" % (n + 1, w), real=True) for w in "01")))
C = tuple(sp.symbols("c:%d" % (n + 1), real=False))
# Cubic Bernstein basis functions
BinomialCoefficient = [(1, 0)]
for i in range(1, n + 1):
last = BinomialCoefficient[-1]
this = tuple(last[j - 1] + last[j] for j in range(len(last))) + (0,)
BinomialCoefficient.append(this)
BinomialCoefficient = tuple(tuple(item[:-1]) for item in BinomialCoefficient)
del last, this
BernsteinPolynomial = tuple(
tuple(c * t**i * (1 - t) ** (n - i) for i, c in enumerate(coeffs))
for n, coeffs in enumerate(BinomialCoefficient)
)
BezierCurve = tuple(
tuple(
sum(P[i][j] * bernstein for i, bernstein in enumerate(bernsteins))
for j in range(2)
)
for n, bernsteins in enumerate(BernsteinPolynomial)
)
BezierCurveC = tuple(
sum(C[i] * bernstein for i, bernstein in enumerate(bernsteins))
for n, bernsteins in enumerate(BernsteinPolynomial)
)
def green(f, curveXY):
f = -sp.integrate(sp.sympify(f), y)
f = f.subs({x: curveXY[0], y: curveXY[1]})
f = sp.integrate(f * sp.diff(curveXY[0], t), (t, 0, 1))
return f
class _BezierFuncsLazy(dict):
def __init__(self, symfunc):
self._symfunc = symfunc
self._bezfuncs = {}
def __missing__(self, i):
args = ["p%d" % d for d in range(i + 1)]
f = green(self._symfunc, BezierCurve[i])
f = sp.gcd_terms(f.collect(sum(P, ()))) # Optimize
return sp.lambdify(args, f)
class GreenPen(BasePen):
_BezierFuncs = {}
@classmethod
def _getGreenBezierFuncs(celf, func):
funcstr = str(func)
if not funcstr in celf._BezierFuncs:
celf._BezierFuncs[funcstr] = _BezierFuncsLazy(func)
return celf._BezierFuncs[funcstr]
def __init__(self, func, glyphset=None):
BasePen.__init__(self, glyphset)
self._funcs = self._getGreenBezierFuncs(func)
self.value = 0
def _moveTo(self, p0):
self._startPoint = p0
def _closePath(self):
p0 = self._getCurrentPoint()
if p0 != self._startPoint:
self._lineTo(self._startPoint)
def _endPath(self):
p0 = self._getCurrentPoint()
if p0 != self._startPoint:
# Green theorem is not defined on open contours.
raise NotImplementedError
def _lineTo(self, p1):
p0 = self._getCurrentPoint()
self.value += self._funcs[1](p0, p1)
def _qCurveToOne(self, p1, p2):
p0 = self._getCurrentPoint()
self.value += self._funcs[2](p0, p1, p2)
def _curveToOne(self, p1, p2, p3):
p0 = self._getCurrentPoint()
self.value += self._funcs[3](p0, p1, p2, p3)
# Sample pens.
# Do not use this in real code.
# Use fontTools.pens.momentsPen.MomentsPen instead.
AreaPen = partial(GreenPen, func=1)
MomentXPen = partial(GreenPen, func=x)
MomentYPen = partial(GreenPen, func=y)
MomentXXPen = partial(GreenPen, func=x * x)
MomentYYPen = partial(GreenPen, func=y * y)
MomentXYPen = partial(GreenPen, func=x * y)
def printGreenPen(penName, funcs, file=sys.stdout, docstring=None):
if docstring is not None:
print('"""%s"""' % docstring)
print(
"""from fontTools.pens.basePen import BasePen, OpenContourError
try:
import cython
COMPILED = cython.compiled
except (AttributeError, ImportError):
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
COMPILED = False
__all__ = ["%s"]
class %s(BasePen):
def __init__(self, glyphset=None):
BasePen.__init__(self, glyphset)
"""
% (penName, penName),
file=file,
)
for name, f in funcs:
print(" self.%s = 0" % name, file=file)
print(
"""
def _moveTo(self, p0):
self._startPoint = p0
def _closePath(self):
p0 = self._getCurrentPoint()
if p0 != self._startPoint:
self._lineTo(self._startPoint)
def _endPath(self):
p0 = self._getCurrentPoint()
if p0 != self._startPoint:
raise OpenContourError(
"Glyph statistics is not defined on open contours."
)
""",
end="",
file=file,
)
for n in (1, 2, 3):
subs = {P[i][j]: [X, Y][j][i] for i in range(n + 1) for j in range(2)}
greens = [green(f, BezierCurve[n]) for name, f in funcs]
greens = [sp.gcd_terms(f.collect(sum(P, ()))) for f in greens] # Optimize
greens = [f.subs(subs) for f in greens] # Convert to p to x/y
defs, exprs = sp.cse(
greens,
optimizations="basic",
symbols=(sp.Symbol("r%d" % i) for i in count()),
)
print()
for name, value in defs:
print(" @cython.locals(%s=cython.double)" % name, file=file)
if n == 1:
print(
"""\
@cython.locals(x0=cython.double, y0=cython.double)
@cython.locals(x1=cython.double, y1=cython.double)
def _lineTo(self, p1):
x0,y0 = self._getCurrentPoint()
x1,y1 = p1
""",
file=file,
)
elif n == 2:
print(
"""\
@cython.locals(x0=cython.double, y0=cython.double)
@cython.locals(x1=cython.double, y1=cython.double)
@cython.locals(x2=cython.double, y2=cython.double)
def _qCurveToOne(self, p1, p2):
x0,y0 = self._getCurrentPoint()
x1,y1 = p1
x2,y2 = p2
""",
file=file,
)
elif n == 3:
print(
"""\
@cython.locals(x0=cython.double, y0=cython.double)
@cython.locals(x1=cython.double, y1=cython.double)
@cython.locals(x2=cython.double, y2=cython.double)
@cython.locals(x3=cython.double, y3=cython.double)
def _curveToOne(self, p1, p2, p3):
x0,y0 = self._getCurrentPoint()
x1,y1 = p1
x2,y2 = p2
x3,y3 = p3
""",
file=file,
)
for name, value in defs:
print(" %s = %s" % (name, value), file=file)
print(file=file)
for name, value in zip([f[0] for f in funcs], exprs):
print(" self.%s += %s" % (name, value), file=file)
print(
"""
if __name__ == '__main__':
from fontTools.misc.symfont import x, y, printGreenPen
printGreenPen('%s', ["""
% penName,
file=file,
)
for name, f in funcs:
print(" ('%s', %s)," % (name, str(f)), file=file)
print(" ])", file=file)
if __name__ == "__main__":
pen = AreaPen()
pen.moveTo((100, 100))
pen.lineTo((100, 200))
pen.lineTo((200, 200))
pen.curveTo((200, 250), (300, 300), (250, 350))
pen.lineTo((200, 100))
pen.closePath()
print(pen.value)

View File

@ -0,0 +1,229 @@
"""Helpers for writing unit tests."""
from collections.abc import Iterable
from io import BytesIO
import os
import re
import shutil
import sys
import tempfile
from unittest import TestCase as _TestCase
from fontTools.config import Config
from fontTools.misc.textTools import tobytes
from fontTools.misc.xmlWriter import XMLWriter
def parseXML(xmlSnippet):
"""Parses a snippet of XML.
Input can be either a single string (unicode or UTF-8 bytes), or a
a sequence of strings.
The result is in the same format that would be returned by
XMLReader, but the parser imposes no constraints on the root
element so it can be called on small snippets of TTX files.
"""
# To support snippets with multiple elements, we add a fake root.
reader = TestXMLReader_()
xml = b"<root>"
if isinstance(xmlSnippet, bytes):
xml += xmlSnippet
elif isinstance(xmlSnippet, str):
xml += tobytes(xmlSnippet, "utf-8")
elif isinstance(xmlSnippet, Iterable):
xml += b"".join(tobytes(s, "utf-8") for s in xmlSnippet)
else:
raise TypeError(
"expected string or sequence of strings; found %r"
% type(xmlSnippet).__name__
)
xml += b"</root>"
reader.parser.Parse(xml, 1)
return reader.root[2]
def parseXmlInto(font, parseInto, xmlSnippet):
parsed_xml = [e for e in parseXML(xmlSnippet.strip()) if not isinstance(e, str)]
for name, attrs, content in parsed_xml:
parseInto.fromXML(name, attrs, content, font)
parseInto.populateDefaults()
return parseInto
class FakeFont:
def __init__(self, glyphs):
self.glyphOrder_ = glyphs
self.reverseGlyphOrderDict_ = {g: i for i, g in enumerate(glyphs)}
self.lazy = False
self.tables = {}
self.cfg = Config()
def __getitem__(self, tag):
return self.tables[tag]
def __setitem__(self, tag, table):
self.tables[tag] = table
def get(self, tag, default=None):
return self.tables.get(tag, default)
def getGlyphID(self, name):
return self.reverseGlyphOrderDict_[name]
def getGlyphIDMany(self, lst):
return [self.getGlyphID(gid) for gid in lst]
def getGlyphName(self, glyphID):
if glyphID < len(self.glyphOrder_):
return self.glyphOrder_[glyphID]
else:
return "glyph%.5d" % glyphID
def getGlyphNameMany(self, lst):
return [self.getGlyphName(gid) for gid in lst]
def getGlyphOrder(self):
return self.glyphOrder_
def getReverseGlyphMap(self):
return self.reverseGlyphOrderDict_
def getGlyphNames(self):
return sorted(self.getGlyphOrder())
class TestXMLReader_(object):
def __init__(self):
from xml.parsers.expat import ParserCreate
self.parser = ParserCreate()
self.parser.StartElementHandler = self.startElement_
self.parser.EndElementHandler = self.endElement_
self.parser.CharacterDataHandler = self.addCharacterData_
self.root = None
self.stack = []
def startElement_(self, name, attrs):
element = (name, attrs, [])
if self.stack:
self.stack[-1][2].append(element)
else:
self.root = element
self.stack.append(element)
def endElement_(self, name):
self.stack.pop()
def addCharacterData_(self, data):
self.stack[-1][2].append(data)
def makeXMLWriter(newlinestr="\n"):
# don't write OS-specific new lines
writer = XMLWriter(BytesIO(), newlinestr=newlinestr)
# erase XML declaration
writer.file.seek(0)
writer.file.truncate()
return writer
def getXML(func, ttFont=None):
"""Call the passed toXML function and return the written content as a
list of lines (unicode strings).
Result is stripped of XML declaration and OS-specific newline characters.
"""
writer = makeXMLWriter()
func(writer, ttFont)
xml = writer.file.getvalue().decode("utf-8")
# toXML methods must always end with a writer.newline()
assert xml.endswith("\n")
return xml.splitlines()
def stripVariableItemsFromTTX(
string: str,
ttLibVersion: bool = True,
checkSumAdjustment: bool = True,
modified: bool = True,
created: bool = True,
sfntVersion: bool = False, # opt-in only
) -> str:
"""Strip stuff like ttLibVersion, checksums, timestamps, etc. from TTX dumps."""
# ttlib changes with the fontTools version
if ttLibVersion:
string = re.sub(' ttLibVersion="[^"]+"', "", string)
# sometimes (e.g. some subsetter tests) we don't care whether it's OTF or TTF
if sfntVersion:
string = re.sub(' sfntVersion="[^"]+"', "", string)
# head table checksum and creation and mod date changes with each save.
if checkSumAdjustment:
string = re.sub('<checkSumAdjustment value="[^"]+"/>', "", string)
if modified:
string = re.sub('<modified value="[^"]+"/>', "", string)
if created:
string = re.sub('<created value="[^"]+"/>', "", string)
return string
class MockFont(object):
"""A font-like object that automatically adds any looked up glyphname
to its glyphOrder."""
def __init__(self):
self._glyphOrder = [".notdef"]
class AllocatingDict(dict):
def __missing__(reverseDict, key):
self._glyphOrder.append(key)
gid = len(reverseDict)
reverseDict[key] = gid
return gid
self._reverseGlyphOrder = AllocatingDict({".notdef": 0})
self.lazy = False
def getGlyphID(self, glyph):
gid = self._reverseGlyphOrder[glyph]
return gid
def getReverseGlyphMap(self):
return self._reverseGlyphOrder
def getGlyphName(self, gid):
return self._glyphOrder[gid]
def getGlyphOrder(self):
return self._glyphOrder
class TestCase(_TestCase):
def __init__(self, methodName):
_TestCase.__init__(self, methodName)
# Python 3 renamed assertRaisesRegexp to assertRaisesRegex,
# and fires deprecation warnings if a program uses the old name.
if not hasattr(self, "assertRaisesRegex"):
self.assertRaisesRegex = self.assertRaisesRegexp
class DataFilesHandler(TestCase):
def setUp(self):
self.tempdir = None
self.num_tempfiles = 0
def tearDown(self):
if self.tempdir:
shutil.rmtree(self.tempdir)
def getpath(self, testfile):
folder = os.path.dirname(sys.modules[self.__module__].__file__)
return os.path.join(folder, "data", testfile)
def temp_dir(self):
if not self.tempdir:
self.tempdir = tempfile.mkdtemp()
def temp_font(self, font_path, file_name):
self.temp_dir()
temppath = os.path.join(self.tempdir, file_name)
shutil.copy2(font_path, temppath)
return temppath

View File

@ -0,0 +1,154 @@
"""fontTools.misc.textTools.py -- miscellaneous routines."""
import ast
import string
# alias kept for backward compatibility
safeEval = ast.literal_eval
class Tag(str):
@staticmethod
def transcode(blob):
if isinstance(blob, bytes):
blob = blob.decode("latin-1")
return blob
def __new__(self, content):
return str.__new__(self, self.transcode(content))
def __ne__(self, other):
return not self.__eq__(other)
def __eq__(self, other):
return str.__eq__(self, self.transcode(other))
def __hash__(self):
return str.__hash__(self)
def tobytes(self):
return self.encode("latin-1")
def readHex(content):
"""Convert a list of hex strings to binary data."""
return deHexStr(strjoin(chunk for chunk in content if isinstance(chunk, str)))
def deHexStr(hexdata):
"""Convert a hex string to binary data."""
hexdata = strjoin(hexdata.split())
if len(hexdata) % 2:
hexdata = hexdata + "0"
data = []
for i in range(0, len(hexdata), 2):
data.append(bytechr(int(hexdata[i : i + 2], 16)))
return bytesjoin(data)
def hexStr(data):
"""Convert binary data to a hex string."""
h = string.hexdigits
r = ""
for c in data:
i = byteord(c)
r = r + h[(i >> 4) & 0xF] + h[i & 0xF]
return r
def num2binary(l, bits=32):
items = []
binary = ""
for i in range(bits):
if l & 0x1:
binary = "1" + binary
else:
binary = "0" + binary
l = l >> 1
if not ((i + 1) % 8):
items.append(binary)
binary = ""
if binary:
items.append(binary)
items.reverse()
assert l in (0, -1), "number doesn't fit in number of bits"
return " ".join(items)
def binary2num(bin):
bin = strjoin(bin.split())
l = 0
for digit in bin:
l = l << 1
if digit != "0":
l = l | 0x1
return l
def caselessSort(alist):
"""Return a sorted copy of a list. If there are only strings
in the list, it will not consider case.
"""
try:
return sorted(alist, key=lambda a: (a.lower(), a))
except TypeError:
return sorted(alist)
def pad(data, size):
r"""Pad byte string 'data' with null bytes until its length is a
multiple of 'size'.
>>> len(pad(b'abcd', 4))
4
>>> len(pad(b'abcde', 2))
6
>>> len(pad(b'abcde', 4))
8
>>> pad(b'abcdef', 4) == b'abcdef\x00\x00'
True
"""
data = tobytes(data)
if size > 1:
remainder = len(data) % size
if remainder:
data += b"\0" * (size - remainder)
return data
def tostr(s, encoding="ascii", errors="strict"):
if not isinstance(s, str):
return s.decode(encoding, errors)
else:
return s
def tobytes(s, encoding="ascii", errors="strict"):
if isinstance(s, str):
return s.encode(encoding, errors)
else:
return bytes(s)
def bytechr(n):
return bytes([n])
def byteord(c):
return c if isinstance(c, int) else ord(c)
def strjoin(iterable, joiner=""):
return tostr(joiner).join(iterable)
def bytesjoin(iterable, joiner=b""):
return tobytes(joiner).join(tobytes(item) for item in iterable)
if __name__ == "__main__":
import doctest, sys
sys.exit(doctest.testmod().failed)

View File

@ -0,0 +1,88 @@
"""fontTools.misc.timeTools.py -- tools for working with OpenType timestamps.
"""
import os
import time
from datetime import datetime, timezone
import calendar
epoch_diff = calendar.timegm((1904, 1, 1, 0, 0, 0, 0, 0, 0))
DAYNAMES = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
MONTHNAMES = [
None,
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
]
def asctime(t=None):
"""
Convert a tuple or struct_time representing a time as returned by gmtime()
or localtime() to a 24-character string of the following form:
>>> asctime(time.gmtime(0))
'Thu Jan 1 00:00:00 1970'
If t is not provided, the current time as returned by localtime() is used.
Locale information is not used by asctime().
This is meant to normalise the output of the built-in time.asctime() across
different platforms and Python versions.
In Python 3.x, the day of the month is right-justified, whereas on Windows
Python 2.7 it is padded with zeros.
See https://github.com/fonttools/fonttools/issues/455
"""
if t is None:
t = time.localtime()
s = "%s %s %2s %s" % (
DAYNAMES[t.tm_wday],
MONTHNAMES[t.tm_mon],
t.tm_mday,
time.strftime("%H:%M:%S %Y", t),
)
return s
def timestampToString(value):
return asctime(time.gmtime(max(0, value + epoch_diff)))
def timestampFromString(value):
wkday, mnth = value[:7].split()
t = datetime.strptime(value[7:], " %d %H:%M:%S %Y")
t = t.replace(month=MONTHNAMES.index(mnth), tzinfo=timezone.utc)
wkday_idx = DAYNAMES.index(wkday)
assert t.weekday() == wkday_idx, '"' + value + '" has inconsistent weekday'
return int(t.timestamp()) - epoch_diff
def timestampNow():
# https://reproducible-builds.org/specs/source-date-epoch/
source_date_epoch = os.environ.get("SOURCE_DATE_EPOCH")
if source_date_epoch is not None:
return int(source_date_epoch) - epoch_diff
return int(time.time() - epoch_diff)
def timestampSinceEpoch(value):
return int(value - epoch_diff)
if __name__ == "__main__":
import sys
import doctest
sys.exit(doctest.testmod().failed)

View File

@ -0,0 +1,507 @@
"""Affine 2D transformation matrix class.
The Transform class implements various transformation matrix operations,
both on the matrix itself, as well as on 2D coordinates.
Transform instances are effectively immutable: all methods that operate on the
transformation itself always return a new instance. This has as the
interesting side effect that Transform instances are hashable, ie. they can be
used as dictionary keys.
This module exports the following symbols:
Transform
this is the main class
Identity
Transform instance set to the identity transformation
Offset
Convenience function that returns a translating transformation
Scale
Convenience function that returns a scaling transformation
The DecomposedTransform class implements a transformation with separate
translate, rotation, scale, skew, and transformation-center components.
:Example:
>>> t = Transform(2, 0, 0, 3, 0, 0)
>>> t.transformPoint((100, 100))
(200, 300)
>>> t = Scale(2, 3)
>>> t.transformPoint((100, 100))
(200, 300)
>>> t.transformPoint((0, 0))
(0, 0)
>>> t = Offset(2, 3)
>>> t.transformPoint((100, 100))
(102, 103)
>>> t.transformPoint((0, 0))
(2, 3)
>>> t2 = t.scale(0.5)
>>> t2.transformPoint((100, 100))
(52.0, 53.0)
>>> import math
>>> t3 = t2.rotate(math.pi / 2)
>>> t3.transformPoint((0, 0))
(2.0, 3.0)
>>> t3.transformPoint((100, 100))
(-48.0, 53.0)
>>> t = Identity.scale(0.5).translate(100, 200).skew(0.1, 0.2)
>>> t.transformPoints([(0, 0), (1, 1), (100, 100)])
[(50.0, 100.0), (50.550167336042726, 100.60135501775433), (105.01673360427253, 160.13550177543362)]
>>>
"""
import math
from typing import NamedTuple
from dataclasses import dataclass
__all__ = ["Transform", "Identity", "Offset", "Scale", "DecomposedTransform"]
_EPSILON = 1e-15
_ONE_EPSILON = 1 - _EPSILON
_MINUS_ONE_EPSILON = -1 + _EPSILON
def _normSinCos(v):
if abs(v) < _EPSILON:
v = 0
elif v > _ONE_EPSILON:
v = 1
elif v < _MINUS_ONE_EPSILON:
v = -1
return v
class Transform(NamedTuple):
"""2x2 transformation matrix plus offset, a.k.a. Affine transform.
Transform instances are immutable: all transforming methods, eg.
rotate(), return a new Transform instance.
:Example:
>>> t = Transform()
>>> t
<Transform [1 0 0 1 0 0]>
>>> t.scale(2)
<Transform [2 0 0 2 0 0]>
>>> t.scale(2.5, 5.5)
<Transform [2.5 0 0 5.5 0 0]>
>>>
>>> t.scale(2, 3).transformPoint((100, 100))
(200, 300)
Transform's constructor takes six arguments, all of which are
optional, and can be used as keyword arguments::
>>> Transform(12)
<Transform [12 0 0 1 0 0]>
>>> Transform(dx=12)
<Transform [1 0 0 1 12 0]>
>>> Transform(yx=12)
<Transform [1 0 12 1 0 0]>
Transform instances also behave like sequences of length 6::
>>> len(Identity)
6
>>> list(Identity)
[1, 0, 0, 1, 0, 0]
>>> tuple(Identity)
(1, 0, 0, 1, 0, 0)
Transform instances are comparable::
>>> t1 = Identity.scale(2, 3).translate(4, 6)
>>> t2 = Identity.translate(8, 18).scale(2, 3)
>>> t1 == t2
1
But beware of floating point rounding errors::
>>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6)
>>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3)
>>> t1
<Transform [0.2 0 0 0.3 0.08 0.18]>
>>> t2
<Transform [0.2 0 0 0.3 0.08 0.18]>
>>> t1 == t2
0
Transform instances are hashable, meaning you can use them as
keys in dictionaries::
>>> d = {Scale(12, 13): None}
>>> d
{<Transform [12 0 0 13 0 0]>: None}
But again, beware of floating point rounding errors::
>>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6)
>>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3)
>>> t1
<Transform [0.2 0 0 0.3 0.08 0.18]>
>>> t2
<Transform [0.2 0 0 0.3 0.08 0.18]>
>>> d = {t1: None}
>>> d
{<Transform [0.2 0 0 0.3 0.08 0.18]>: None}
>>> d[t2]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
KeyError: <Transform [0.2 0 0 0.3 0.08 0.18]>
"""
xx: float = 1
xy: float = 0
yx: float = 0
yy: float = 1
dx: float = 0
dy: float = 0
def transformPoint(self, p):
"""Transform a point.
:Example:
>>> t = Transform()
>>> t = t.scale(2.5, 5.5)
>>> t.transformPoint((100, 100))
(250.0, 550.0)
"""
(x, y) = p
xx, xy, yx, yy, dx, dy = self
return (xx * x + yx * y + dx, xy * x + yy * y + dy)
def transformPoints(self, points):
"""Transform a list of points.
:Example:
>>> t = Scale(2, 3)
>>> t.transformPoints([(0, 0), (0, 100), (100, 100), (100, 0)])
[(0, 0), (0, 300), (200, 300), (200, 0)]
>>>
"""
xx, xy, yx, yy, dx, dy = self
return [(xx * x + yx * y + dx, xy * x + yy * y + dy) for x, y in points]
def transformVector(self, v):
"""Transform an (dx, dy) vector, treating translation as zero.
:Example:
>>> t = Transform(2, 0, 0, 2, 10, 20)
>>> t.transformVector((3, -4))
(6, -8)
>>>
"""
(dx, dy) = v
xx, xy, yx, yy = self[:4]
return (xx * dx + yx * dy, xy * dx + yy * dy)
def transformVectors(self, vectors):
"""Transform a list of (dx, dy) vector, treating translation as zero.
:Example:
>>> t = Transform(2, 0, 0, 2, 10, 20)
>>> t.transformVectors([(3, -4), (5, -6)])
[(6, -8), (10, -12)]
>>>
"""
xx, xy, yx, yy = self[:4]
return [(xx * dx + yx * dy, xy * dx + yy * dy) for dx, dy in vectors]
def translate(self, x=0, y=0):
"""Return a new transformation, translated (offset) by x, y.
:Example:
>>> t = Transform()
>>> t.translate(20, 30)
<Transform [1 0 0 1 20 30]>
>>>
"""
return self.transform((1, 0, 0, 1, x, y))
def scale(self, x=1, y=None):
"""Return a new transformation, scaled by x, y. The 'y' argument
may be None, which implies to use the x value for y as well.
:Example:
>>> t = Transform()
>>> t.scale(5)
<Transform [5 0 0 5 0 0]>
>>> t.scale(5, 6)
<Transform [5 0 0 6 0 0]>
>>>
"""
if y is None:
y = x
return self.transform((x, 0, 0, y, 0, 0))
def rotate(self, angle):
"""Return a new transformation, rotated by 'angle' (radians).
:Example:
>>> import math
>>> t = Transform()
>>> t.rotate(math.pi / 2)
<Transform [0 1 -1 0 0 0]>
>>>
"""
import math
c = _normSinCos(math.cos(angle))
s = _normSinCos(math.sin(angle))
return self.transform((c, s, -s, c, 0, 0))
def skew(self, x=0, y=0):
"""Return a new transformation, skewed by x and y.
:Example:
>>> import math
>>> t = Transform()
>>> t.skew(math.pi / 4)
<Transform [1 0 1 1 0 0]>
>>>
"""
import math
return self.transform((1, math.tan(y), math.tan(x), 1, 0, 0))
def transform(self, other):
"""Return a new transformation, transformed by another
transformation.
:Example:
>>> t = Transform(2, 0, 0, 3, 1, 6)
>>> t.transform((4, 3, 2, 1, 5, 6))
<Transform [8 9 4 3 11 24]>
>>>
"""
xx1, xy1, yx1, yy1, dx1, dy1 = other
xx2, xy2, yx2, yy2, dx2, dy2 = self
return self.__class__(
xx1 * xx2 + xy1 * yx2,
xx1 * xy2 + xy1 * yy2,
yx1 * xx2 + yy1 * yx2,
yx1 * xy2 + yy1 * yy2,
xx2 * dx1 + yx2 * dy1 + dx2,
xy2 * dx1 + yy2 * dy1 + dy2,
)
def reverseTransform(self, other):
"""Return a new transformation, which is the other transformation
transformed by self. self.reverseTransform(other) is equivalent to
other.transform(self).
:Example:
>>> t = Transform(2, 0, 0, 3, 1, 6)
>>> t.reverseTransform((4, 3, 2, 1, 5, 6))
<Transform [8 6 6 3 21 15]>
>>> Transform(4, 3, 2, 1, 5, 6).transform((2, 0, 0, 3, 1, 6))
<Transform [8 6 6 3 21 15]>
>>>
"""
xx1, xy1, yx1, yy1, dx1, dy1 = self
xx2, xy2, yx2, yy2, dx2, dy2 = other
return self.__class__(
xx1 * xx2 + xy1 * yx2,
xx1 * xy2 + xy1 * yy2,
yx1 * xx2 + yy1 * yx2,
yx1 * xy2 + yy1 * yy2,
xx2 * dx1 + yx2 * dy1 + dx2,
xy2 * dx1 + yy2 * dy1 + dy2,
)
def inverse(self):
"""Return the inverse transformation.
:Example:
>>> t = Identity.translate(2, 3).scale(4, 5)
>>> t.transformPoint((10, 20))
(42, 103)
>>> it = t.inverse()
>>> it.transformPoint((42, 103))
(10.0, 20.0)
>>>
"""
if self == Identity:
return self
xx, xy, yx, yy, dx, dy = self
det = xx * yy - yx * xy
xx, xy, yx, yy = yy / det, -xy / det, -yx / det, xx / det
dx, dy = -xx * dx - yx * dy, -xy * dx - yy * dy
return self.__class__(xx, xy, yx, yy, dx, dy)
def toPS(self):
"""Return a PostScript representation
:Example:
>>> t = Identity.scale(2, 3).translate(4, 5)
>>> t.toPS()
'[2 0 0 3 8 15]'
>>>
"""
return "[%s %s %s %s %s %s]" % self
def toDecomposed(self) -> "DecomposedTransform":
"""Decompose into a DecomposedTransform."""
return DecomposedTransform.fromTransform(self)
def __bool__(self):
"""Returns True if transform is not identity, False otherwise.
:Example:
>>> bool(Identity)
False
>>> bool(Transform())
False
>>> bool(Scale(1.))
False
>>> bool(Scale(2))
True
>>> bool(Offset())
False
>>> bool(Offset(0))
False
>>> bool(Offset(2))
True
"""
return self != Identity
def __repr__(self):
return "<%s [%g %g %g %g %g %g]>" % ((self.__class__.__name__,) + self)
Identity = Transform()
def Offset(x=0, y=0):
"""Return the identity transformation offset by x, y.
:Example:
>>> Offset(2, 3)
<Transform [1 0 0 1 2 3]>
>>>
"""
return Transform(1, 0, 0, 1, x, y)
def Scale(x, y=None):
"""Return the identity transformation scaled by x, y. The 'y' argument
may be None, which implies to use the x value for y as well.
:Example:
>>> Scale(2, 3)
<Transform [2 0 0 3 0 0]>
>>>
"""
if y is None:
y = x
return Transform(x, 0, 0, y, 0, 0)
@dataclass
class DecomposedTransform:
"""The DecomposedTransform class implements a transformation with separate
translate, rotation, scale, skew, and transformation-center components.
"""
translateX: float = 0
translateY: float = 0
rotation: float = 0 # in degrees, counter-clockwise
scaleX: float = 1
scaleY: float = 1
skewX: float = 0 # in degrees, clockwise
skewY: float = 0 # in degrees, counter-clockwise
tCenterX: float = 0
tCenterY: float = 0
def __bool__(self):
return (
self.translateX != 0
or self.translateY != 0
or self.rotation != 0
or self.scaleX != 1
or self.scaleY != 1
or self.skewX != 0
or self.skewY != 0
or self.tCenterX != 0
or self.tCenterY != 0
)
@classmethod
def fromTransform(self, transform):
# Adapted from an answer on
# https://math.stackexchange.com/questions/13150/extracting-rotation-scale-values-from-2d-transformation-matrix
a, b, c, d, x, y = transform
sx = math.copysign(1, a)
if sx < 0:
a *= sx
b *= sx
delta = a * d - b * c
rotation = 0
scaleX = scaleY = 0
skewX = skewY = 0
# Apply the QR-like decomposition.
if a != 0 or b != 0:
r = math.sqrt(a * a + b * b)
rotation = math.acos(a / r) if b >= 0 else -math.acos(a / r)
scaleX, scaleY = (r, delta / r)
skewX, skewY = (math.atan((a * c + b * d) / (r * r)), 0)
elif c != 0 or d != 0:
s = math.sqrt(c * c + d * d)
rotation = math.pi / 2 - (
math.acos(-c / s) if d >= 0 else -math.acos(c / s)
)
scaleX, scaleY = (delta / s, s)
skewX, skewY = (0, math.atan((a * c + b * d) / (s * s)))
else:
# a = b = c = d = 0
pass
return DecomposedTransform(
x,
y,
math.degrees(rotation),
scaleX * sx,
scaleY,
math.degrees(skewX) * sx,
math.degrees(skewY),
0,
0,
)
def toTransform(self):
"""Return the Transform() equivalent of this transformation.
:Example:
>>> DecomposedTransform(scaleX=2, scaleY=2).toTransform()
<Transform [2 0 0 2 0 0]>
>>>
"""
t = Transform()
t = t.translate(
self.translateX + self.tCenterX, self.translateY + self.tCenterY
)
t = t.rotate(math.radians(self.rotation))
t = t.scale(self.scaleX, self.scaleY)
t = t.skew(math.radians(self.skewX), math.radians(self.skewY))
t = t.translate(-self.tCenterX, -self.tCenterY)
return t
if __name__ == "__main__":
import sys
import doctest
sys.exit(doctest.testmod().failed)

View File

@ -0,0 +1,45 @@
"""Generic tools for working with trees."""
from math import ceil, log
def build_n_ary_tree(leaves, n):
"""Build N-ary tree from sequence of leaf nodes.
Return a list of lists where each non-leaf node is a list containing
max n nodes.
"""
if not leaves:
return []
assert n > 1
depth = ceil(log(len(leaves), n))
if depth <= 1:
return list(leaves)
# Fully populate complete subtrees of root until we have enough leaves left
root = []
unassigned = None
full_step = n ** (depth - 1)
for i in range(0, len(leaves), full_step):
subtree = leaves[i : i + full_step]
if len(subtree) < full_step:
unassigned = subtree
break
while len(subtree) > n:
subtree = [subtree[k : k + n] for k in range(0, len(subtree), n)]
root.append(subtree)
if unassigned:
# Recurse to fill the last subtree, which is the only partially populated one
subtree = build_n_ary_tree(unassigned, n)
if len(subtree) <= n - len(root):
# replace last subtree with its children if they can still fit
root.extend(subtree)
else:
root.append(subtree)
assert len(root) <= n
return root

View File

@ -0,0 +1,147 @@
from numbers import Number
import math
import operator
import warnings
__all__ = ["Vector"]
class Vector(tuple):
"""A math-like vector.
Represents an n-dimensional numeric vector. ``Vector`` objects support
vector addition and subtraction, scalar multiplication and division,
negation, rounding, and comparison tests.
"""
__slots__ = ()
def __new__(cls, values, keep=False):
if keep is not False:
warnings.warn(
"the 'keep' argument has been deprecated",
DeprecationWarning,
)
if type(values) == Vector:
# No need to create a new object
return values
return super().__new__(cls, values)
def __repr__(self):
return f"{self.__class__.__name__}({super().__repr__()})"
def _vectorOp(self, other, op):
if isinstance(other, Vector):
assert len(self) == len(other)
return self.__class__(op(a, b) for a, b in zip(self, other))
if isinstance(other, Number):
return self.__class__(op(v, other) for v in self)
raise NotImplementedError()
def _scalarOp(self, other, op):
if isinstance(other, Number):
return self.__class__(op(v, other) for v in self)
raise NotImplementedError()
def _unaryOp(self, op):
return self.__class__(op(v) for v in self)
def __add__(self, other):
return self._vectorOp(other, operator.add)
__radd__ = __add__
def __sub__(self, other):
return self._vectorOp(other, operator.sub)
def __rsub__(self, other):
return self._vectorOp(other, _operator_rsub)
def __mul__(self, other):
return self._scalarOp(other, operator.mul)
__rmul__ = __mul__
def __truediv__(self, other):
return self._scalarOp(other, operator.truediv)
def __rtruediv__(self, other):
return self._scalarOp(other, _operator_rtruediv)
def __pos__(self):
return self._unaryOp(operator.pos)
def __neg__(self):
return self._unaryOp(operator.neg)
def __round__(self, *, round=round):
return self._unaryOp(round)
def __eq__(self, other):
if isinstance(other, list):
# bw compat Vector([1, 2, 3]) == [1, 2, 3]
other = tuple(other)
return super().__eq__(other)
def __ne__(self, other):
return not self.__eq__(other)
def __bool__(self):
return any(self)
__nonzero__ = __bool__
def __abs__(self):
return math.sqrt(sum(x * x for x in self))
def length(self):
"""Return the length of the vector. Equivalent to abs(vector)."""
return abs(self)
def normalized(self):
"""Return the normalized vector of the vector."""
return self / abs(self)
def dot(self, other):
"""Performs vector dot product, returning the sum of
``a[0] * b[0], a[1] * b[1], ...``"""
assert len(self) == len(other)
return sum(a * b for a, b in zip(self, other))
# Deprecated methods/properties
def toInt(self):
warnings.warn(
"the 'toInt' method has been deprecated, use round(vector) instead",
DeprecationWarning,
)
return self.__round__()
@property
def values(self):
warnings.warn(
"the 'values' attribute has been deprecated, use "
"the vector object itself instead",
DeprecationWarning,
)
return list(self)
@values.setter
def values(self, values):
raise AttributeError(
"can't set attribute, the 'values' attribute has been deprecated",
)
def isclose(self, other: "Vector", **kwargs) -> bool:
"""Return True if the vector is close to another Vector."""
assert len(self) == len(other)
return all(math.isclose(a, b, **kwargs) for a, b in zip(self, other))
def _operator_rsub(a, b):
return operator.sub(b, a)
def _operator_rtruediv(a, b):
return operator.truediv(b, a)

View File

@ -0,0 +1,142 @@
"""Generic visitor pattern implementation for Python objects."""
import enum
class Visitor(object):
defaultStop = False
@classmethod
def _register(celf, clazzes_attrs):
assert celf != Visitor, "Subclass Visitor instead."
if "_visitors" not in celf.__dict__:
celf._visitors = {}
def wrapper(method):
assert method.__name__ == "visit"
for clazzes, attrs in clazzes_attrs:
if type(clazzes) != tuple:
clazzes = (clazzes,)
if type(attrs) == str:
attrs = (attrs,)
for clazz in clazzes:
_visitors = celf._visitors.setdefault(clazz, {})
for attr in attrs:
assert attr not in _visitors, (
"Oops, class '%s' has visitor function for '%s' defined already."
% (clazz.__name__, attr)
)
_visitors[attr] = method
return None
return wrapper
@classmethod
def register(celf, clazzes):
if type(clazzes) != tuple:
clazzes = (clazzes,)
return celf._register([(clazzes, (None,))])
@classmethod
def register_attr(celf, clazzes, attrs):
clazzes_attrs = []
if type(clazzes) != tuple:
clazzes = (clazzes,)
if type(attrs) == str:
attrs = (attrs,)
for clazz in clazzes:
clazzes_attrs.append((clazz, attrs))
return celf._register(clazzes_attrs)
@classmethod
def register_attrs(celf, clazzes_attrs):
return celf._register(clazzes_attrs)
@classmethod
def _visitorsFor(celf, thing, _default={}):
typ = type(thing)
for celf in celf.mro():
_visitors = getattr(celf, "_visitors", None)
if _visitors is None:
break
for base in typ.mro():
m = celf._visitors.get(base, None)
if m is not None:
return m
return _default
def visitObject(self, obj, *args, **kwargs):
"""Called to visit an object. This function loops over all non-private
attributes of the objects and calls any user-registered (via
@register_attr() or @register_attrs()) visit() functions.
If there is no user-registered visit function, of if there is and it
returns True, or it returns None (or doesn't return anything) and
visitor.defaultStop is False (default), then the visitor will proceed
to call self.visitAttr()"""
keys = sorted(vars(obj).keys())
_visitors = self._visitorsFor(obj)
defaultVisitor = _visitors.get("*", None)
for key in keys:
if key[0] == "_":
continue
value = getattr(obj, key)
visitorFunc = _visitors.get(key, defaultVisitor)
if visitorFunc is not None:
ret = visitorFunc(self, obj, key, value, *args, **kwargs)
if ret == False or (ret is None and self.defaultStop):
continue
self.visitAttr(obj, key, value, *args, **kwargs)
def visitAttr(self, obj, attr, value, *args, **kwargs):
"""Called to visit an attribute of an object."""
self.visit(value, *args, **kwargs)
def visitList(self, obj, *args, **kwargs):
"""Called to visit any value that is a list."""
for value in obj:
self.visit(value, *args, **kwargs)
def visitDict(self, obj, *args, **kwargs):
"""Called to visit any value that is a dictionary."""
for value in obj.values():
self.visit(value, *args, **kwargs)
def visitLeaf(self, obj, *args, **kwargs):
"""Called to visit any value that is not an object, list,
or dictionary."""
pass
def visit(self, obj, *args, **kwargs):
"""This is the main entry to the visitor. The visitor will visit object
obj.
The visitor will first determine if there is a registered (via
@register()) visit function for the type of object. If there is, it
will be called, and (visitor, obj, *args, **kwargs) will be passed to
the user visit function.
If there is no user-registered visit function, of if there is and it
returns True, or it returns None (or doesn't return anything) and
visitor.defaultStop is False (default), then the visitor will proceed
to dispatch to one of self.visitObject(), self.visitList(),
self.visitDict(), or self.visitLeaf() (any of which can be overriden in
a subclass)."""
visitorFunc = self._visitorsFor(obj).get(None, None)
if visitorFunc is not None:
ret = visitorFunc(self, obj, *args, **kwargs)
if ret == False or (ret is None and self.defaultStop):
return
if hasattr(obj, "__dict__") and not isinstance(obj, enum.Enum):
self.visitObject(obj, *args, **kwargs)
elif isinstance(obj, list):
self.visitList(obj, *args, **kwargs)
elif isinstance(obj, dict):
self.visitDict(obj, *args, **kwargs)
else:
self.visitLeaf(obj, *args, **kwargs)

View File

@ -0,0 +1,188 @@
from fontTools import ttLib
from fontTools.misc.textTools import safeEval
from fontTools.ttLib.tables.DefaultTable import DefaultTable
import sys
import os
import logging
log = logging.getLogger(__name__)
class TTXParseError(Exception):
pass
BUFSIZE = 0x4000
class XMLReader(object):
def __init__(
self, fileOrPath, ttFont, progress=None, quiet=None, contentOnly=False
):
if fileOrPath == "-":
fileOrPath = sys.stdin
if not hasattr(fileOrPath, "read"):
self.file = open(fileOrPath, "rb")
self._closeStream = True
else:
# assume readable file object
self.file = fileOrPath
self._closeStream = False
self.ttFont = ttFont
self.progress = progress
if quiet is not None:
from fontTools.misc.loggingTools import deprecateArgument
deprecateArgument("quiet", "configure logging instead")
self.quiet = quiet
self.root = None
self.contentStack = []
self.contentOnly = contentOnly
self.stackSize = 0
def read(self, rootless=False):
if rootless:
self.stackSize += 1
if self.progress:
self.file.seek(0, 2)
fileSize = self.file.tell()
self.progress.set(0, fileSize // 100 or 1)
self.file.seek(0)
self._parseFile(self.file)
if self._closeStream:
self.close()
if rootless:
self.stackSize -= 1
def close(self):
self.file.close()
def _parseFile(self, file):
from xml.parsers.expat import ParserCreate
parser = ParserCreate()
parser.StartElementHandler = self._startElementHandler
parser.EndElementHandler = self._endElementHandler
parser.CharacterDataHandler = self._characterDataHandler
pos = 0
while True:
chunk = file.read(BUFSIZE)
if not chunk:
parser.Parse(chunk, 1)
break
pos = pos + len(chunk)
if self.progress:
self.progress.set(pos // 100)
parser.Parse(chunk, 0)
def _startElementHandler(self, name, attrs):
if self.stackSize == 1 and self.contentOnly:
# We already know the table we're parsing, skip
# parsing the table tag and continue to
# stack '2' which begins parsing content
self.contentStack.append([])
self.stackSize = 2
return
stackSize = self.stackSize
self.stackSize = stackSize + 1
subFile = attrs.get("src")
if subFile is not None:
if hasattr(self.file, "name"):
# if file has a name, get its parent directory
dirname = os.path.dirname(self.file.name)
else:
# else fall back to using the current working directory
dirname = os.getcwd()
subFile = os.path.join(dirname, subFile)
if not stackSize:
if name != "ttFont":
raise TTXParseError("illegal root tag: %s" % name)
if self.ttFont.reader is None and not self.ttFont.tables:
sfntVersion = attrs.get("sfntVersion")
if sfntVersion is not None:
if len(sfntVersion) != 4:
sfntVersion = safeEval('"' + sfntVersion + '"')
self.ttFont.sfntVersion = sfntVersion
self.contentStack.append([])
elif stackSize == 1:
if subFile is not None:
subReader = XMLReader(subFile, self.ttFont, self.progress)
subReader.read()
self.contentStack.append([])
return
tag = ttLib.xmlToTag(name)
msg = "Parsing '%s' table..." % tag
if self.progress:
self.progress.setLabel(msg)
log.info(msg)
if tag == "GlyphOrder":
tableClass = ttLib.GlyphOrder
elif "ERROR" in attrs or ("raw" in attrs and safeEval(attrs["raw"])):
tableClass = DefaultTable
else:
tableClass = ttLib.getTableClass(tag)
if tableClass is None:
tableClass = DefaultTable
if tag == "loca" and tag in self.ttFont:
# Special-case the 'loca' table as we need the
# original if the 'glyf' table isn't recompiled.
self.currentTable = self.ttFont[tag]
else:
self.currentTable = tableClass(tag)
self.ttFont[tag] = self.currentTable
self.contentStack.append([])
elif stackSize == 2 and subFile is not None:
subReader = XMLReader(subFile, self.ttFont, self.progress, contentOnly=True)
subReader.read()
self.contentStack.append([])
self.root = subReader.root
elif stackSize == 2:
self.contentStack.append([])
self.root = (name, attrs, self.contentStack[-1])
else:
l = []
self.contentStack[-1].append((name, attrs, l))
self.contentStack.append(l)
def _characterDataHandler(self, data):
if self.stackSize > 1:
# parser parses in chunks, so we may get multiple calls
# for the same text node; thus we need to append the data
# to the last item in the content stack:
# https://github.com/fonttools/fonttools/issues/2614
if (
data != "\n"
and self.contentStack[-1]
and isinstance(self.contentStack[-1][-1], str)
and self.contentStack[-1][-1] != "\n"
):
self.contentStack[-1][-1] += data
else:
self.contentStack[-1].append(data)
def _endElementHandler(self, name):
self.stackSize = self.stackSize - 1
del self.contentStack[-1]
if not self.contentOnly:
if self.stackSize == 1:
self.root = None
elif self.stackSize == 2:
name, attrs, content = self.root
self.currentTable.fromXML(name, attrs, content, self.ttFont)
self.root = None
class ProgressPrinter(object):
def __init__(self, title, maxval=100):
print(title)
def set(self, val, maxval=None):
pass
def increment(self, val=1):
pass
def setLabel(self, text):
print(text)

View File

@ -0,0 +1,204 @@
"""xmlWriter.py -- Simple XML authoring class"""
from fontTools.misc.textTools import byteord, strjoin, tobytes, tostr
import sys
import os
import string
INDENT = " "
class XMLWriter(object):
def __init__(
self,
fileOrPath,
indentwhite=INDENT,
idlefunc=None,
encoding="utf_8",
newlinestr="\n",
):
if encoding.lower().replace("-", "").replace("_", "") != "utf8":
raise Exception("Only UTF-8 encoding is supported.")
if fileOrPath == "-":
fileOrPath = sys.stdout
if not hasattr(fileOrPath, "write"):
self.filename = fileOrPath
self.file = open(fileOrPath, "wb")
self._closeStream = True
else:
self.filename = None
# assume writable file object
self.file = fileOrPath
self._closeStream = False
# Figure out if writer expects bytes or unicodes
try:
# The bytes check should be first. See:
# https://github.com/fonttools/fonttools/pull/233
self.file.write(b"")
self.totype = tobytes
except TypeError:
# This better not fail.
self.file.write("")
self.totype = tostr
self.indentwhite = self.totype(indentwhite)
if newlinestr is None:
self.newlinestr = self.totype(os.linesep)
else:
self.newlinestr = self.totype(newlinestr)
self.indentlevel = 0
self.stack = []
self.needindent = 1
self.idlefunc = idlefunc
self.idlecounter = 0
self._writeraw('<?xml version="1.0" encoding="UTF-8"?>')
self.newline()
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
self.close()
def close(self):
if self._closeStream:
self.file.close()
def write(self, string, indent=True):
"""Writes text."""
self._writeraw(escape(string), indent=indent)
def writecdata(self, string):
"""Writes text in a CDATA section."""
self._writeraw("<![CDATA[" + string + "]]>")
def write8bit(self, data, strip=False):
"""Writes a bytes() sequence into the XML, escaping
non-ASCII bytes. When this is read in xmlReader,
the original bytes can be recovered by encoding to
'latin-1'."""
self._writeraw(escape8bit(data), strip=strip)
def write_noindent(self, string):
"""Writes text without indentation."""
self._writeraw(escape(string), indent=False)
def _writeraw(self, data, indent=True, strip=False):
"""Writes bytes, possibly indented."""
if indent and self.needindent:
self.file.write(self.indentlevel * self.indentwhite)
self.needindent = 0
s = self.totype(data, encoding="utf_8")
if strip:
s = s.strip()
self.file.write(s)
def newline(self):
self.file.write(self.newlinestr)
self.needindent = 1
idlecounter = self.idlecounter
if not idlecounter % 100 and self.idlefunc is not None:
self.idlefunc()
self.idlecounter = idlecounter + 1
def comment(self, data):
data = escape(data)
lines = data.split("\n")
self._writeraw("<!-- " + lines[0])
for line in lines[1:]:
self.newline()
self._writeraw(" " + line)
self._writeraw(" -->")
def simpletag(self, _TAG_, *args, **kwargs):
attrdata = self.stringifyattrs(*args, **kwargs)
data = "<%s%s/>" % (_TAG_, attrdata)
self._writeraw(data)
def begintag(self, _TAG_, *args, **kwargs):
attrdata = self.stringifyattrs(*args, **kwargs)
data = "<%s%s>" % (_TAG_, attrdata)
self._writeraw(data)
self.stack.append(_TAG_)
self.indent()
def endtag(self, _TAG_):
assert self.stack and self.stack[-1] == _TAG_, "nonmatching endtag"
del self.stack[-1]
self.dedent()
data = "</%s>" % _TAG_
self._writeraw(data)
def dumphex(self, data):
linelength = 16
hexlinelength = linelength * 2
chunksize = 8
for i in range(0, len(data), linelength):
hexline = hexStr(data[i : i + linelength])
line = ""
white = ""
for j in range(0, hexlinelength, chunksize):
line = line + white + hexline[j : j + chunksize]
white = " "
self._writeraw(line)
self.newline()
def indent(self):
self.indentlevel = self.indentlevel + 1
def dedent(self):
assert self.indentlevel > 0
self.indentlevel = self.indentlevel - 1
def stringifyattrs(self, *args, **kwargs):
if kwargs:
assert not args
attributes = sorted(kwargs.items())
elif args:
assert len(args) == 1
attributes = args[0]
else:
return ""
data = ""
for attr, value in attributes:
if not isinstance(value, (bytes, str)):
value = str(value)
data = data + ' %s="%s"' % (attr, escapeattr(value))
return data
def escape(data):
data = tostr(data, "utf_8")
data = data.replace("&", "&amp;")
data = data.replace("<", "&lt;")
data = data.replace(">", "&gt;")
data = data.replace("\r", "&#13;")
return data
def escapeattr(data):
data = escape(data)
data = data.replace('"', "&quot;")
return data
def escape8bit(data):
"""Input is Unicode string."""
def escapechar(c):
n = ord(c)
if 32 <= n <= 127 and c not in "<&>":
return c
else:
return "&#" + repr(n) + ";"
return strjoin(map(escapechar, data.decode("latin-1")))
def hexStr(s):
h = string.hexdigits
r = ""
for c in s:
i = byteord(c)
r = r + h[(i >> 4) & 0xF] + h[i & 0xF]
return r

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,5 @@
import sys
from fontTools.mtiLib import main
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1 @@
"""OpenType Layout-related functionality."""

Some files were not shown because too many files have changed in this diff Show More