asd
This commit is contained in:
285
venv/lib/python3.12/site-packages/contourpy/__init__.py
Normal file
285
venv/lib/python3.12/site-packages/contourpy/__init__.py
Normal file
@ -0,0 +1,285 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
|
||||
from contourpy._contourpy import (
|
||||
ContourGenerator,
|
||||
FillType,
|
||||
LineType,
|
||||
Mpl2005ContourGenerator,
|
||||
Mpl2014ContourGenerator,
|
||||
SerialContourGenerator,
|
||||
ThreadedContourGenerator,
|
||||
ZInterp,
|
||||
max_threads,
|
||||
)
|
||||
from contourpy._version import __version__
|
||||
from contourpy.chunk import calc_chunk_sizes
|
||||
from contourpy.convert import (
|
||||
convert_filled,
|
||||
convert_lines,
|
||||
convert_multi_filled,
|
||||
convert_multi_lines,
|
||||
)
|
||||
from contourpy.dechunk import (
|
||||
dechunk_filled,
|
||||
dechunk_lines,
|
||||
dechunk_multi_filled,
|
||||
dechunk_multi_lines,
|
||||
)
|
||||
from contourpy.enum_util import as_fill_type, as_line_type, as_z_interp
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing import Any
|
||||
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from ._contourpy import CoordinateArray, MaskArray
|
||||
|
||||
__all__ = [
|
||||
"__version__",
|
||||
"contour_generator",
|
||||
"convert_filled",
|
||||
"convert_lines",
|
||||
"convert_multi_filled",
|
||||
"convert_multi_lines",
|
||||
"dechunk_filled",
|
||||
"dechunk_lines",
|
||||
"dechunk_multi_filled",
|
||||
"dechunk_multi_lines",
|
||||
"max_threads",
|
||||
"FillType",
|
||||
"LineType",
|
||||
"ContourGenerator",
|
||||
"Mpl2005ContourGenerator",
|
||||
"Mpl2014ContourGenerator",
|
||||
"SerialContourGenerator",
|
||||
"ThreadedContourGenerator",
|
||||
"ZInterp",
|
||||
]
|
||||
|
||||
|
||||
# Simple mapping of algorithm name to class name.
|
||||
_class_lookup: dict[str, type[ContourGenerator]] = {
|
||||
"mpl2005": Mpl2005ContourGenerator,
|
||||
"mpl2014": Mpl2014ContourGenerator,
|
||||
"serial": SerialContourGenerator,
|
||||
"threaded": ThreadedContourGenerator,
|
||||
}
|
||||
|
||||
|
||||
def _remove_z_mask(
|
||||
z: ArrayLike | np.ma.MaskedArray[Any, Any] | None,
|
||||
) -> tuple[CoordinateArray, MaskArray | None]:
|
||||
# Preserve mask if present.
|
||||
z_array = np.ma.asarray(z, dtype=np.float64) # type: ignore[no-untyped-call]
|
||||
z_masked = np.ma.masked_invalid(z_array, copy=False) # type: ignore[no-untyped-call]
|
||||
|
||||
if np.ma.is_masked(z_masked): # type: ignore[no-untyped-call]
|
||||
mask = np.ma.getmask(z_masked) # type: ignore[no-untyped-call]
|
||||
else:
|
||||
mask = None
|
||||
|
||||
return np.ma.getdata(z_masked), mask # type: ignore[no-untyped-call]
|
||||
|
||||
|
||||
def contour_generator(
|
||||
x: ArrayLike | None = None,
|
||||
y: ArrayLike | None = None,
|
||||
z: ArrayLike | np.ma.MaskedArray[Any, Any] | None = None,
|
||||
*,
|
||||
name: str = "serial",
|
||||
corner_mask: bool | None = None,
|
||||
line_type: LineType | str | None = None,
|
||||
fill_type: FillType | str | None = None,
|
||||
chunk_size: int | tuple[int, int] | None = None,
|
||||
chunk_count: int | tuple[int, int] | None = None,
|
||||
total_chunk_count: int | None = None,
|
||||
quad_as_tri: bool = False,
|
||||
z_interp: ZInterp | str | None = ZInterp.Linear,
|
||||
thread_count: int = 0,
|
||||
) -> ContourGenerator:
|
||||
"""Create and return a :class:`~.ContourGenerator` object.
|
||||
|
||||
The class and properties of the returned :class:`~.ContourGenerator` are determined by the
|
||||
function arguments, with sensible defaults.
|
||||
|
||||
Args:
|
||||
x (array-like of shape (ny, nx) or (nx,), optional): The x-coordinates of the ``z`` values.
|
||||
May be 2D with the same shape as ``z.shape``, or 1D with length ``nx = z.shape[1]``.
|
||||
If not specified are assumed to be ``np.arange(nx)``. Must be ordered monotonically.
|
||||
y (array-like of shape (ny, nx) or (ny,), optional): The y-coordinates of the ``z`` values.
|
||||
May be 2D with the same shape as ``z.shape``, or 1D with length ``ny = z.shape[0]``.
|
||||
If not specified are assumed to be ``np.arange(ny)``. Must be ordered monotonically.
|
||||
z (array-like of shape (ny, nx), may be a masked array): The 2D gridded values to calculate
|
||||
the contours of. May be a masked array, and any invalid values (``np.inf`` or
|
||||
``np.nan``) will also be masked out.
|
||||
name (str): Algorithm name, one of ``"serial"``, ``"threaded"``, ``"mpl2005"`` or
|
||||
``"mpl2014"``, default ``"serial"``.
|
||||
corner_mask (bool, optional): Enable/disable corner masking, which only has an effect if
|
||||
``z`` is a masked array. If ``False``, any quad touching a masked point is masked out.
|
||||
If ``True``, only the triangular corners of quads nearest these points are always masked
|
||||
out, other triangular corners comprising three unmasked points are contoured as usual.
|
||||
If not specified, uses the default provided by the algorithm ``name``.
|
||||
line_type (LineType or str, optional): The format of contour line data returned from calls
|
||||
to :meth:`~.ContourGenerator.lines`, specified either as a :class:`~.LineType` or its
|
||||
string equivalent such as ``"SeparateCode"``.
|
||||
If not specified, uses the default provided by the algorithm ``name``.
|
||||
The relationship between the :class:`~.LineType` enum and the data format returned from
|
||||
:meth:`~.ContourGenerator.lines` is explained at :ref:`line_type`.
|
||||
fill_type (FillType or str, optional): The format of filled contour data returned from calls
|
||||
to :meth:`~.ContourGenerator.filled`, specified either as a :class:`~.FillType` or its
|
||||
string equivalent such as ``"OuterOffset"``.
|
||||
If not specified, uses the default provided by the algorithm ``name``.
|
||||
The relationship between the :class:`~.FillType` enum and the data format returned from
|
||||
:meth:`~.ContourGenerator.filled` is explained at :ref:`fill_type`.
|
||||
chunk_size (int or tuple(int, int), optional): Chunk size in (y, x) directions, or the same
|
||||
size in both directions if only one value is specified.
|
||||
chunk_count (int or tuple(int, int), optional): Chunk count in (y, x) directions, or the
|
||||
same count in both directions if only one value is specified.
|
||||
total_chunk_count (int, optional): Total number of chunks.
|
||||
quad_as_tri (bool): Enable/disable treating quads as 4 triangles, default ``False``.
|
||||
If ``False``, a contour line within a quad is a straight line between points on two of
|
||||
its edges. If ``True``, each full quad is divided into 4 triangles using a virtual point
|
||||
at the centre (mean x, y of the corner points) and a contour line is piecewise linear
|
||||
within those triangles. Corner-masked triangles are not affected by this setting, only
|
||||
full unmasked quads.
|
||||
z_interp (ZInterp or str, optional): How to interpolate ``z`` values when determining where
|
||||
contour lines intersect the edges of quads and the ``z`` values of the central points of
|
||||
quads, specified either as a :class:`~contourpy.ZInterp` or its string equivalent such
|
||||
as ``"Log"``. Default is ``ZInterp.Linear``.
|
||||
thread_count (int): Number of threads to use for contour calculation, default 0. Threads can
|
||||
only be used with an algorithm ``name`` that supports threads (currently only
|
||||
``name="threaded"``) and there must be at least the same number of chunks as threads.
|
||||
If ``thread_count=0`` and ``name="threaded"`` then it uses the maximum number of threads
|
||||
as determined by the C++11 call ``std::thread::hardware_concurrency()``. If ``name`` is
|
||||
something other than ``"threaded"`` then the ``thread_count`` will be set to ``1``.
|
||||
|
||||
Return:
|
||||
:class:`~.ContourGenerator`.
|
||||
|
||||
Note:
|
||||
A maximum of one of ``chunk_size``, ``chunk_count`` and ``total_chunk_count`` may be
|
||||
specified.
|
||||
|
||||
Warning:
|
||||
The ``name="mpl2005"`` algorithm does not implement chunking for contour lines.
|
||||
"""
|
||||
x = np.asarray(x, dtype=np.float64)
|
||||
y = np.asarray(y, dtype=np.float64)
|
||||
z, mask = _remove_z_mask(z)
|
||||
|
||||
# Check arguments: z.
|
||||
if z.ndim != 2:
|
||||
raise TypeError(f"Input z must be 2D, not {z.ndim}D")
|
||||
|
||||
if z.shape[0] < 2 or z.shape[1] < 2:
|
||||
raise TypeError(f"Input z must be at least a (2, 2) shaped array, but has shape {z.shape}")
|
||||
|
||||
ny, nx = z.shape
|
||||
|
||||
# Check arguments: x and y.
|
||||
if x.ndim != y.ndim:
|
||||
raise TypeError(f"Number of dimensions of x ({x.ndim}) and y ({y.ndim}) do not match")
|
||||
|
||||
if x.ndim == 0:
|
||||
x = np.arange(nx, dtype=np.float64)
|
||||
y = np.arange(ny, dtype=np.float64)
|
||||
x, y = np.meshgrid(x, y)
|
||||
elif x.ndim == 1:
|
||||
if len(x) != nx:
|
||||
raise TypeError(f"Length of x ({len(x)}) must match number of columns in z ({nx})")
|
||||
if len(y) != ny:
|
||||
raise TypeError(f"Length of y ({len(y)}) must match number of rows in z ({ny})")
|
||||
x, y = np.meshgrid(x, y)
|
||||
elif x.ndim == 2:
|
||||
if x.shape != z.shape:
|
||||
raise TypeError(f"Shapes of x {x.shape} and z {z.shape} do not match")
|
||||
if y.shape != z.shape:
|
||||
raise TypeError(f"Shapes of y {y.shape} and z {z.shape} do not match")
|
||||
else:
|
||||
raise TypeError(f"Inputs x and y must be None, 1D or 2D, not {x.ndim}D")
|
||||
|
||||
# Check mask shape just in case.
|
||||
if mask is not None and mask.shape != z.shape:
|
||||
raise ValueError("If mask is set it must be a 2D array with the same shape as z")
|
||||
|
||||
# Check arguments: name.
|
||||
if name not in _class_lookup:
|
||||
raise ValueError(f"Unrecognised contour generator name: {name}")
|
||||
|
||||
# Check arguments: chunk_size, chunk_count and total_chunk_count.
|
||||
y_chunk_size, x_chunk_size = calc_chunk_sizes(
|
||||
chunk_size, chunk_count, total_chunk_count, ny, nx)
|
||||
|
||||
cls = _class_lookup[name]
|
||||
|
||||
# Check arguments: corner_mask.
|
||||
if corner_mask is None:
|
||||
# Set it to default, which is True if the algorithm supports it.
|
||||
corner_mask = cls.supports_corner_mask()
|
||||
elif corner_mask and not cls.supports_corner_mask():
|
||||
raise ValueError(f"{name} contour generator does not support corner_mask=True")
|
||||
|
||||
# Check arguments: line_type.
|
||||
if line_type is None:
|
||||
line_type = cls.default_line_type
|
||||
else:
|
||||
line_type = as_line_type(line_type)
|
||||
|
||||
if not cls.supports_line_type(line_type):
|
||||
raise ValueError(f"{name} contour generator does not support line_type {line_type}")
|
||||
|
||||
# Check arguments: fill_type.
|
||||
if fill_type is None:
|
||||
fill_type = cls.default_fill_type
|
||||
else:
|
||||
fill_type = as_fill_type(fill_type)
|
||||
|
||||
if not cls.supports_fill_type(fill_type):
|
||||
raise ValueError(f"{name} contour generator does not support fill_type {fill_type}")
|
||||
|
||||
# Check arguments: quad_as_tri.
|
||||
if quad_as_tri and not cls.supports_quad_as_tri():
|
||||
raise ValueError(f"{name} contour generator does not support quad_as_tri=True")
|
||||
|
||||
# Check arguments: z_interp.
|
||||
if z_interp is None:
|
||||
z_interp = ZInterp.Linear
|
||||
else:
|
||||
z_interp = as_z_interp(z_interp)
|
||||
|
||||
if z_interp != ZInterp.Linear and not cls.supports_z_interp():
|
||||
raise ValueError(f"{name} contour generator does not support z_interp {z_interp}")
|
||||
|
||||
# Check arguments: thread_count.
|
||||
if thread_count not in (0, 1) and not cls.supports_threads():
|
||||
raise ValueError(f"{name} contour generator does not support thread_count {thread_count}")
|
||||
|
||||
# Prepare args and kwargs for contour generator constructor.
|
||||
args = [x, y, z, mask]
|
||||
kwargs: dict[str, int | bool | LineType | FillType | ZInterp] = {
|
||||
"x_chunk_size": x_chunk_size,
|
||||
"y_chunk_size": y_chunk_size,
|
||||
}
|
||||
|
||||
if name not in ("mpl2005", "mpl2014"):
|
||||
kwargs["line_type"] = line_type
|
||||
kwargs["fill_type"] = fill_type
|
||||
|
||||
if cls.supports_corner_mask():
|
||||
kwargs["corner_mask"] = corner_mask
|
||||
|
||||
if cls.supports_quad_as_tri():
|
||||
kwargs["quad_as_tri"] = quad_as_tri
|
||||
|
||||
if cls.supports_z_interp():
|
||||
kwargs["z_interp"] = z_interp
|
||||
|
||||
if cls.supports_threads():
|
||||
kwargs["thread_count"] = thread_count
|
||||
|
||||
# Create contour generator.
|
||||
return cls(*args, **kwargs)
|
||||
Binary file not shown.
199
venv/lib/python3.12/site-packages/contourpy/_contourpy.pyi
Normal file
199
venv/lib/python3.12/site-packages/contourpy/_contourpy.pyi
Normal file
@ -0,0 +1,199 @@
|
||||
from typing import ClassVar, NoReturn, TypeAlias
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
import contourpy._contourpy as cpy
|
||||
|
||||
# Input numpy array types, the same as in common.h
|
||||
CoordinateArray: TypeAlias = npt.NDArray[np.float64]
|
||||
MaskArray: TypeAlias = npt.NDArray[np.bool_]
|
||||
LevelArray: TypeAlias = npt.ArrayLike
|
||||
|
||||
# Output numpy array types, the same as in common.h
|
||||
PointArray: TypeAlias = npt.NDArray[np.float64]
|
||||
CodeArray: TypeAlias = npt.NDArray[np.uint8]
|
||||
OffsetArray: TypeAlias = npt.NDArray[np.uint32]
|
||||
|
||||
# Types returned from filled()
|
||||
FillReturn_OuterCode: TypeAlias = tuple[list[PointArray], list[CodeArray]]
|
||||
FillReturn_OuterOffset: TypeAlias = tuple[list[PointArray], list[OffsetArray]]
|
||||
FillReturn_ChunkCombinedCode: TypeAlias = tuple[list[PointArray | None], list[CodeArray | None]]
|
||||
FillReturn_ChunkCombinedOffset: TypeAlias = tuple[list[PointArray | None], list[OffsetArray | None]]
|
||||
FillReturn_ChunkCombinedCodeOffset: TypeAlias = tuple[list[PointArray | None], list[CodeArray | None], list[OffsetArray | None]]
|
||||
FillReturn_ChunkCombinedOffsetOffset: TypeAlias = tuple[list[PointArray | None], list[OffsetArray | None], list[OffsetArray | None]]
|
||||
FillReturn_Chunk: TypeAlias = FillReturn_ChunkCombinedCode | FillReturn_ChunkCombinedOffset | FillReturn_ChunkCombinedCodeOffset | FillReturn_ChunkCombinedOffsetOffset
|
||||
FillReturn: TypeAlias = FillReturn_OuterCode | FillReturn_OuterOffset | FillReturn_Chunk
|
||||
|
||||
# Types returned from lines()
|
||||
LineReturn_Separate: TypeAlias = list[PointArray]
|
||||
LineReturn_SeparateCode: TypeAlias = tuple[list[PointArray], list[CodeArray]]
|
||||
LineReturn_ChunkCombinedCode: TypeAlias = tuple[list[PointArray | None], list[CodeArray | None]]
|
||||
LineReturn_ChunkCombinedOffset: TypeAlias = tuple[list[PointArray | None], list[OffsetArray | None]]
|
||||
LineReturn_ChunkCombinedNan: TypeAlias = tuple[list[PointArray | None]]
|
||||
LineReturn_Chunk: TypeAlias = LineReturn_ChunkCombinedCode | LineReturn_ChunkCombinedOffset | LineReturn_ChunkCombinedNan
|
||||
LineReturn: TypeAlias = LineReturn_Separate | LineReturn_SeparateCode | LineReturn_Chunk
|
||||
|
||||
|
||||
NDEBUG: int
|
||||
__version__: str
|
||||
|
||||
class FillType:
|
||||
ChunkCombinedCode: ClassVar[cpy.FillType]
|
||||
ChunkCombinedCodeOffset: ClassVar[cpy.FillType]
|
||||
ChunkCombinedOffset: ClassVar[cpy.FillType]
|
||||
ChunkCombinedOffsetOffset: ClassVar[cpy.FillType]
|
||||
OuterCode: ClassVar[cpy.FillType]
|
||||
OuterOffset: ClassVar[cpy.FillType]
|
||||
__members__: ClassVar[dict[str, cpy.FillType]]
|
||||
def __eq__(self, other: object) -> bool: ...
|
||||
def __getstate__(self) -> int: ...
|
||||
def __hash__(self) -> int: ...
|
||||
def __index__(self) -> int: ...
|
||||
def __init__(self, value: int) -> None: ...
|
||||
def __int__(self) -> int: ...
|
||||
def __ne__(self, other: object) -> bool: ...
|
||||
def __setstate__(self, state: int) -> NoReturn: ...
|
||||
@property
|
||||
def name(self) -> str: ...
|
||||
@property
|
||||
def value(self) -> int: ...
|
||||
|
||||
class LineType:
|
||||
ChunkCombinedCode: ClassVar[cpy.LineType]
|
||||
ChunkCombinedNan: ClassVar[cpy.LineType]
|
||||
ChunkCombinedOffset: ClassVar[cpy.LineType]
|
||||
Separate: ClassVar[cpy.LineType]
|
||||
SeparateCode: ClassVar[cpy.LineType]
|
||||
__members__: ClassVar[dict[str, cpy.LineType]]
|
||||
def __eq__(self, other: object) -> bool: ...
|
||||
def __getstate__(self) -> int: ...
|
||||
def __hash__(self) -> int: ...
|
||||
def __index__(self) -> int: ...
|
||||
def __init__(self, value: int) -> None: ...
|
||||
def __int__(self) -> int: ...
|
||||
def __ne__(self, other: object) -> bool: ...
|
||||
def __setstate__(self, state: int) -> NoReturn: ...
|
||||
@property
|
||||
def name(self) -> str: ...
|
||||
@property
|
||||
def value(self) -> int: ...
|
||||
|
||||
class ZInterp:
|
||||
Linear: ClassVar[cpy.ZInterp]
|
||||
Log: ClassVar[cpy.ZInterp]
|
||||
__members__: ClassVar[dict[str, cpy.ZInterp]]
|
||||
def __eq__(self, other: object) -> bool: ...
|
||||
def __getstate__(self) -> int: ...
|
||||
def __hash__(self) -> int: ...
|
||||
def __index__(self) -> int: ...
|
||||
def __init__(self, value: int) -> None: ...
|
||||
def __int__(self) -> int: ...
|
||||
def __ne__(self, other: object) -> bool: ...
|
||||
def __setstate__(self, state: int) -> NoReturn: ...
|
||||
@property
|
||||
def name(self) -> str: ...
|
||||
@property
|
||||
def value(self) -> int: ...
|
||||
|
||||
def max_threads() -> int: ...
|
||||
|
||||
class ContourGenerator:
|
||||
def create_contour(self, level: float) -> LineReturn: ...
|
||||
def create_filled_contour(self, lower_level: float, upper_level: float) -> FillReturn: ...
|
||||
def filled(self, lower_level: float, upper_level: float) -> FillReturn: ...
|
||||
def lines(self, level: float) -> LineReturn: ...
|
||||
def multi_filled(self, levels: LevelArray) -> list[FillReturn]: ...
|
||||
def multi_lines(self, levels: LevelArray) -> list[LineReturn]: ...
|
||||
@staticmethod
|
||||
def supports_corner_mask() -> bool: ...
|
||||
@staticmethod
|
||||
def supports_fill_type(fill_type: FillType) -> bool: ...
|
||||
@staticmethod
|
||||
def supports_line_type(line_type: LineType) -> bool: ...
|
||||
@staticmethod
|
||||
def supports_quad_as_tri() -> bool: ...
|
||||
@staticmethod
|
||||
def supports_threads() -> bool: ...
|
||||
@staticmethod
|
||||
def supports_z_interp() -> bool: ...
|
||||
@property
|
||||
def chunk_count(self) -> tuple[int, int]: ...
|
||||
@property
|
||||
def chunk_size(self) -> tuple[int, int]: ...
|
||||
@property
|
||||
def corner_mask(self) -> bool: ...
|
||||
@property
|
||||
def fill_type(self) -> FillType: ...
|
||||
@property
|
||||
def line_type(self) -> LineType: ...
|
||||
@property
|
||||
def quad_as_tri(self) -> bool: ...
|
||||
@property
|
||||
def thread_count(self) -> int: ...
|
||||
@property
|
||||
def z_interp(self) -> ZInterp: ...
|
||||
default_fill_type: cpy.FillType
|
||||
default_line_type: cpy.LineType
|
||||
|
||||
class Mpl2005ContourGenerator(ContourGenerator):
|
||||
def __init__(
|
||||
self,
|
||||
x: CoordinateArray,
|
||||
y: CoordinateArray,
|
||||
z: CoordinateArray,
|
||||
mask: MaskArray,
|
||||
*,
|
||||
x_chunk_size: int = 0,
|
||||
y_chunk_size: int = 0,
|
||||
) -> None: ...
|
||||
|
||||
class Mpl2014ContourGenerator(ContourGenerator):
|
||||
def __init__(
|
||||
self,
|
||||
x: CoordinateArray,
|
||||
y: CoordinateArray,
|
||||
z: CoordinateArray,
|
||||
mask: MaskArray,
|
||||
*,
|
||||
corner_mask: bool,
|
||||
x_chunk_size: int = 0,
|
||||
y_chunk_size: int = 0,
|
||||
) -> None: ...
|
||||
|
||||
class SerialContourGenerator(ContourGenerator):
|
||||
def __init__(
|
||||
self,
|
||||
x: CoordinateArray,
|
||||
y: CoordinateArray,
|
||||
z: CoordinateArray,
|
||||
mask: MaskArray,
|
||||
*,
|
||||
corner_mask: bool,
|
||||
line_type: LineType,
|
||||
fill_type: FillType,
|
||||
quad_as_tri: bool,
|
||||
z_interp: ZInterp,
|
||||
x_chunk_size: int = 0,
|
||||
y_chunk_size: int = 0,
|
||||
) -> None: ...
|
||||
def _write_cache(self) -> NoReturn: ...
|
||||
|
||||
class ThreadedContourGenerator(ContourGenerator):
|
||||
def __init__(
|
||||
self,
|
||||
x: CoordinateArray,
|
||||
y: CoordinateArray,
|
||||
z: CoordinateArray,
|
||||
mask: MaskArray,
|
||||
*,
|
||||
corner_mask: bool,
|
||||
line_type: LineType,
|
||||
fill_type: FillType,
|
||||
quad_as_tri: bool,
|
||||
z_interp: ZInterp,
|
||||
x_chunk_size: int = 0,
|
||||
y_chunk_size: int = 0,
|
||||
thread_count: int = 0,
|
||||
) -> None: ...
|
||||
def _write_cache(self) -> None: ...
|
||||
1
venv/lib/python3.12/site-packages/contourpy/_version.py
Normal file
1
venv/lib/python3.12/site-packages/contourpy/_version.py
Normal file
@ -0,0 +1 @@
|
||||
__version__ = "1.3.1"
|
||||
261
venv/lib/python3.12/site-packages/contourpy/array.py
Normal file
261
venv/lib/python3.12/site-packages/contourpy/array.py
Normal file
@ -0,0 +1,261 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from itertools import chain, pairwise
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
|
||||
from contourpy.typecheck import check_code_array, check_offset_array, check_point_array
|
||||
from contourpy.types import CLOSEPOLY, LINETO, MOVETO, code_dtype, offset_dtype, point_dtype
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import contourpy._contourpy as cpy
|
||||
|
||||
|
||||
def codes_from_offsets(offsets: cpy.OffsetArray) -> cpy.CodeArray:
|
||||
"""Determine codes from offsets, assuming they all correspond to closed polygons.
|
||||
"""
|
||||
check_offset_array(offsets)
|
||||
|
||||
n = offsets[-1]
|
||||
codes = np.full(n, LINETO, dtype=code_dtype)
|
||||
codes[offsets[:-1]] = MOVETO
|
||||
codes[offsets[1:] - 1] = CLOSEPOLY
|
||||
return codes
|
||||
|
||||
|
||||
def codes_from_offsets_and_points(
|
||||
offsets: cpy.OffsetArray,
|
||||
points: cpy.PointArray,
|
||||
) -> cpy.CodeArray:
|
||||
"""Determine codes from offsets and points, using the equality of the start and end points of
|
||||
each line to determine if lines are closed or not.
|
||||
"""
|
||||
check_offset_array(offsets)
|
||||
check_point_array(points)
|
||||
|
||||
codes = np.full(len(points), LINETO, dtype=code_dtype)
|
||||
codes[offsets[:-1]] = MOVETO
|
||||
|
||||
end_offsets = offsets[1:] - 1
|
||||
closed = np.all(points[offsets[:-1]] == points[end_offsets], axis=1)
|
||||
codes[end_offsets[closed]] = CLOSEPOLY
|
||||
|
||||
return codes
|
||||
|
||||
|
||||
def codes_from_points(points: cpy.PointArray) -> cpy.CodeArray:
|
||||
"""Determine codes for a single line, using the equality of the start and end points to
|
||||
determine if the line is closed or not.
|
||||
"""
|
||||
check_point_array(points)
|
||||
|
||||
n = len(points)
|
||||
codes = np.full(n, LINETO, dtype=code_dtype)
|
||||
codes[0] = MOVETO
|
||||
if np.all(points[0] == points[-1]):
|
||||
codes[-1] = CLOSEPOLY
|
||||
return codes
|
||||
|
||||
|
||||
def concat_codes(list_of_codes: list[cpy.CodeArray]) -> cpy.CodeArray:
|
||||
"""Concatenate a list of codes arrays into a single code array.
|
||||
"""
|
||||
if not list_of_codes:
|
||||
raise ValueError("Empty list passed to concat_codes")
|
||||
|
||||
return np.concatenate(list_of_codes, dtype=code_dtype)
|
||||
|
||||
|
||||
def concat_codes_or_none(list_of_codes_or_none: list[cpy.CodeArray | None]) -> cpy.CodeArray | None:
|
||||
"""Concatenate a list of codes arrays or None into a single code array or None.
|
||||
"""
|
||||
list_of_codes = [codes for codes in list_of_codes_or_none if codes is not None]
|
||||
if list_of_codes:
|
||||
return concat_codes(list_of_codes)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def concat_offsets(list_of_offsets: list[cpy.OffsetArray]) -> cpy.OffsetArray:
|
||||
"""Concatenate a list of offsets arrays into a single offset array.
|
||||
"""
|
||||
if not list_of_offsets:
|
||||
raise ValueError("Empty list passed to concat_offsets")
|
||||
|
||||
n = len(list_of_offsets)
|
||||
cumulative = np.cumsum([offsets[-1] for offsets in list_of_offsets], dtype=offset_dtype)
|
||||
ret: cpy.OffsetArray = np.concatenate(
|
||||
(list_of_offsets[0], *(list_of_offsets[i+1][1:] + cumulative[i] for i in range(n-1))),
|
||||
dtype=offset_dtype,
|
||||
)
|
||||
return ret
|
||||
|
||||
|
||||
def concat_offsets_or_none(
|
||||
list_of_offsets_or_none: list[cpy.OffsetArray | None],
|
||||
) -> cpy.OffsetArray | None:
|
||||
"""Concatenate a list of offsets arrays or None into a single offset array or None.
|
||||
"""
|
||||
list_of_offsets = [offsets for offsets in list_of_offsets_or_none if offsets is not None]
|
||||
if list_of_offsets:
|
||||
return concat_offsets(list_of_offsets)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def concat_points(list_of_points: list[cpy.PointArray]) -> cpy.PointArray:
|
||||
"""Concatenate a list of point arrays into a single point array.
|
||||
"""
|
||||
if not list_of_points:
|
||||
raise ValueError("Empty list passed to concat_points")
|
||||
|
||||
return np.concatenate(list_of_points, dtype=point_dtype)
|
||||
|
||||
|
||||
def concat_points_or_none(
|
||||
list_of_points_or_none: list[cpy.PointArray | None],
|
||||
) -> cpy.PointArray | None:
|
||||
"""Concatenate a list of point arrays or None into a single point array or None.
|
||||
"""
|
||||
list_of_points = [points for points in list_of_points_or_none if points is not None]
|
||||
if list_of_points:
|
||||
return concat_points(list_of_points)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def concat_points_or_none_with_nan(
|
||||
list_of_points_or_none: list[cpy.PointArray | None],
|
||||
) -> cpy.PointArray | None:
|
||||
"""Concatenate a list of points or None into a single point array or None, with NaNs used to
|
||||
separate each line.
|
||||
"""
|
||||
list_of_points = [points for points in list_of_points_or_none if points is not None]
|
||||
if list_of_points:
|
||||
return concat_points_with_nan(list_of_points)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def concat_points_with_nan(list_of_points: list[cpy.PointArray]) -> cpy.PointArray:
|
||||
"""Concatenate a list of points into a single point array with NaNs used to separate each line.
|
||||
"""
|
||||
if not list_of_points:
|
||||
raise ValueError("Empty list passed to concat_points_with_nan")
|
||||
|
||||
if len(list_of_points) == 1:
|
||||
return list_of_points[0]
|
||||
else:
|
||||
nan_spacer = np.full((1, 2), np.nan, dtype=point_dtype)
|
||||
list_of_points = [list_of_points[0],
|
||||
*list(chain(*((nan_spacer, x) for x in list_of_points[1:])))]
|
||||
return concat_points(list_of_points)
|
||||
|
||||
|
||||
def insert_nan_at_offsets(points: cpy.PointArray, offsets: cpy.OffsetArray) -> cpy.PointArray:
|
||||
"""Insert NaNs into a point array at locations specified by an offset array.
|
||||
"""
|
||||
check_point_array(points)
|
||||
check_offset_array(offsets)
|
||||
|
||||
if len(offsets) <= 2:
|
||||
return points
|
||||
else:
|
||||
nan_spacer = np.array([np.nan, np.nan], dtype=point_dtype)
|
||||
# Convert offsets to int64 to avoid numpy error when mixing signed and unsigned ints.
|
||||
return np.insert(points, offsets[1:-1].astype(np.int64), nan_spacer, axis=0)
|
||||
|
||||
|
||||
def offsets_from_codes(codes: cpy.CodeArray) -> cpy.OffsetArray:
|
||||
"""Determine offsets from codes using locations of MOVETO codes.
|
||||
"""
|
||||
check_code_array(codes)
|
||||
|
||||
return np.append(np.nonzero(codes == MOVETO)[0], len(codes)).astype(offset_dtype)
|
||||
|
||||
|
||||
def offsets_from_lengths(list_of_points: list[cpy.PointArray]) -> cpy.OffsetArray:
|
||||
"""Determine offsets from lengths of point arrays.
|
||||
"""
|
||||
if not list_of_points:
|
||||
raise ValueError("Empty list passed to offsets_from_lengths")
|
||||
|
||||
return np.cumsum([0] + [len(line) for line in list_of_points], dtype=offset_dtype)
|
||||
|
||||
|
||||
def outer_offsets_from_list_of_codes(list_of_codes: list[cpy.CodeArray]) -> cpy.OffsetArray:
|
||||
"""Determine outer offsets from codes using locations of MOVETO codes.
|
||||
"""
|
||||
if not list_of_codes:
|
||||
raise ValueError("Empty list passed to outer_offsets_from_list_of_codes")
|
||||
|
||||
return np.cumsum([0] + [np.count_nonzero(codes == MOVETO) for codes in list_of_codes],
|
||||
dtype=offset_dtype)
|
||||
|
||||
|
||||
def outer_offsets_from_list_of_offsets(list_of_offsets: list[cpy.OffsetArray]) -> cpy.OffsetArray:
|
||||
"""Determine outer offsets from a list of offsets.
|
||||
"""
|
||||
if not list_of_offsets:
|
||||
raise ValueError("Empty list passed to outer_offsets_from_list_of_offsets")
|
||||
|
||||
return np.cumsum([0] + [len(offsets)-1 for offsets in list_of_offsets], dtype=offset_dtype)
|
||||
|
||||
|
||||
def remove_nan(points: cpy.PointArray) -> tuple[cpy.PointArray, cpy.OffsetArray]:
|
||||
"""Remove NaN from a points array, also return the offsets corresponding to the NaN removed.
|
||||
"""
|
||||
check_point_array(points)
|
||||
|
||||
nan_offsets = np.nonzero(np.isnan(points[:, 0]))[0]
|
||||
if len(nan_offsets) == 0:
|
||||
return points, np.array([0, len(points)], dtype=offset_dtype)
|
||||
else:
|
||||
points = np.delete(points, nan_offsets, axis=0)
|
||||
nan_offsets -= np.arange(len(nan_offsets))
|
||||
offsets: cpy.OffsetArray = np.empty(len(nan_offsets)+2, dtype=offset_dtype)
|
||||
offsets[0] = 0
|
||||
offsets[1:-1] = nan_offsets
|
||||
offsets[-1] = len(points)
|
||||
return points, offsets
|
||||
|
||||
|
||||
def split_codes_by_offsets(codes: cpy.CodeArray, offsets: cpy.OffsetArray) -> list[cpy.CodeArray]:
|
||||
"""Split a code array at locations specified by an offset array into a list of code arrays.
|
||||
"""
|
||||
check_code_array(codes)
|
||||
check_offset_array(offsets)
|
||||
|
||||
if len(offsets) > 2:
|
||||
return np.split(codes, offsets[1:-1])
|
||||
else:
|
||||
return [codes]
|
||||
|
||||
|
||||
def split_points_by_offsets(
|
||||
points: cpy.PointArray,
|
||||
offsets: cpy.OffsetArray,
|
||||
) -> list[cpy.PointArray]:
|
||||
"""Split a point array at locations specified by an offset array into a list of point arrays.
|
||||
"""
|
||||
check_point_array(points)
|
||||
check_offset_array(offsets)
|
||||
|
||||
if len(offsets) > 2:
|
||||
return np.split(points, offsets[1:-1])
|
||||
else:
|
||||
return [points]
|
||||
|
||||
|
||||
def split_points_at_nan(points: cpy.PointArray) -> list[cpy.PointArray]:
|
||||
"""Split a points array at NaNs into a list of point arrays.
|
||||
"""
|
||||
check_point_array(points)
|
||||
|
||||
nan_offsets = np.nonzero(np.isnan(points[:, 0]))[0]
|
||||
if len(nan_offsets) == 0:
|
||||
return [points]
|
||||
else:
|
||||
nan_offsets = np.concatenate(([-1], nan_offsets, [len(points)]))
|
||||
return [points[s+1:e] for s, e in pairwise(nan_offsets)]
|
||||
95
venv/lib/python3.12/site-packages/contourpy/chunk.py
Normal file
95
venv/lib/python3.12/site-packages/contourpy/chunk.py
Normal file
@ -0,0 +1,95 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
||||
|
||||
def calc_chunk_sizes(
|
||||
chunk_size: int | tuple[int, int] | None,
|
||||
chunk_count: int | tuple[int, int] | None,
|
||||
total_chunk_count: int | None,
|
||||
ny: int,
|
||||
nx: int,
|
||||
) -> tuple[int, int]:
|
||||
"""Calculate chunk sizes.
|
||||
|
||||
Args:
|
||||
chunk_size (int or tuple(int, int), optional): Chunk size in (y, x) directions, or the same
|
||||
size in both directions if only one is specified. Cannot be negative.
|
||||
chunk_count (int or tuple(int, int), optional): Chunk count in (y, x) directions, or the
|
||||
same count in both directions if only one is specified. If less than 1, set to 1.
|
||||
total_chunk_count (int, optional): Total number of chunks. If less than 1, set to 1.
|
||||
ny (int): Number of grid points in y-direction.
|
||||
nx (int): Number of grid points in x-direction.
|
||||
|
||||
Return:
|
||||
tuple(int, int): Chunk sizes (y_chunk_size, x_chunk_size).
|
||||
|
||||
Note:
|
||||
Zero or one of ``chunk_size``, ``chunk_count`` and ``total_chunk_count`` should be
|
||||
specified.
|
||||
"""
|
||||
if sum([chunk_size is not None, chunk_count is not None, total_chunk_count is not None]) > 1:
|
||||
raise ValueError("Only one of chunk_size, chunk_count and total_chunk_count should be set")
|
||||
|
||||
if nx < 2 or ny < 2:
|
||||
raise ValueError(f"(ny, nx) must be at least (2, 2), not ({ny}, {nx})")
|
||||
|
||||
if total_chunk_count is not None:
|
||||
max_chunk_count = (nx-1)*(ny-1)
|
||||
total_chunk_count = min(max(total_chunk_count, 1), max_chunk_count)
|
||||
if total_chunk_count == 1:
|
||||
chunk_size = 0
|
||||
elif total_chunk_count == max_chunk_count:
|
||||
chunk_size = (1, 1)
|
||||
else:
|
||||
factors = two_factors(total_chunk_count)
|
||||
if ny > nx:
|
||||
chunk_count = factors
|
||||
else:
|
||||
chunk_count = (factors[1], factors[0])
|
||||
|
||||
if chunk_count is not None:
|
||||
if isinstance(chunk_count, tuple):
|
||||
y_chunk_count, x_chunk_count = chunk_count
|
||||
else:
|
||||
y_chunk_count = x_chunk_count = chunk_count
|
||||
x_chunk_count = min(max(x_chunk_count, 1), nx-1)
|
||||
y_chunk_count = min(max(y_chunk_count, 1), ny-1)
|
||||
chunk_size = (math.ceil((ny-1) / y_chunk_count), math.ceil((nx-1) / x_chunk_count))
|
||||
|
||||
if chunk_size is None:
|
||||
y_chunk_size = x_chunk_size = 0
|
||||
elif isinstance(chunk_size, tuple):
|
||||
y_chunk_size, x_chunk_size = chunk_size
|
||||
else:
|
||||
y_chunk_size = x_chunk_size = chunk_size
|
||||
|
||||
if x_chunk_size < 0 or y_chunk_size < 0:
|
||||
raise ValueError("chunk_size cannot be negative")
|
||||
|
||||
return y_chunk_size, x_chunk_size
|
||||
|
||||
|
||||
def two_factors(n: int) -> tuple[int, int]:
|
||||
"""Split an integer into two integer factors.
|
||||
|
||||
The two factors will be as close as possible to the sqrt of n, and are returned in decreasing
|
||||
order. Worst case returns (n, 1).
|
||||
|
||||
Args:
|
||||
n (int): The integer to factorize, must be positive.
|
||||
|
||||
Return:
|
||||
tuple(int, int): The two factors of n, in decreasing order.
|
||||
"""
|
||||
if n < 0:
|
||||
raise ValueError(f"two_factors expects positive integer not {n}")
|
||||
|
||||
i = math.ceil(math.sqrt(n))
|
||||
while n % i != 0:
|
||||
i -= 1
|
||||
j = n // i
|
||||
if i > j:
|
||||
return i, j
|
||||
else:
|
||||
return j, i
|
||||
621
venv/lib/python3.12/site-packages/contourpy/convert.py
Normal file
621
venv/lib/python3.12/site-packages/contourpy/convert.py
Normal file
@ -0,0 +1,621 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from itertools import pairwise
|
||||
from typing import TYPE_CHECKING, cast
|
||||
|
||||
import numpy as np
|
||||
|
||||
from contourpy._contourpy import FillType, LineType
|
||||
import contourpy.array as arr
|
||||
from contourpy.enum_util import as_fill_type, as_line_type
|
||||
from contourpy.typecheck import check_filled, check_lines
|
||||
from contourpy.types import MOVETO, offset_dtype
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import contourpy._contourpy as cpy
|
||||
|
||||
|
||||
def _convert_filled_from_OuterCode(
|
||||
filled: cpy.FillReturn_OuterCode,
|
||||
fill_type_to: FillType,
|
||||
) -> cpy.FillReturn:
|
||||
if fill_type_to == FillType.OuterCode:
|
||||
return filled
|
||||
elif fill_type_to == FillType.OuterOffset:
|
||||
return (filled[0], [arr.offsets_from_codes(codes) for codes in filled[1]])
|
||||
|
||||
if len(filled[0]) > 0:
|
||||
points = arr.concat_points(filled[0])
|
||||
codes = arr.concat_codes(filled[1])
|
||||
else:
|
||||
points = None
|
||||
codes = None
|
||||
|
||||
if fill_type_to == FillType.ChunkCombinedCode:
|
||||
return ([points], [codes])
|
||||
elif fill_type_to == FillType.ChunkCombinedOffset:
|
||||
return ([points], [None if codes is None else arr.offsets_from_codes(codes)])
|
||||
elif fill_type_to == FillType.ChunkCombinedCodeOffset:
|
||||
outer_offsets = None if points is None else arr.offsets_from_lengths(filled[0])
|
||||
ret1: cpy.FillReturn_ChunkCombinedCodeOffset = ([points], [codes], [outer_offsets])
|
||||
return ret1
|
||||
elif fill_type_to == FillType.ChunkCombinedOffsetOffset:
|
||||
if codes is None:
|
||||
ret2: cpy.FillReturn_ChunkCombinedOffsetOffset = ([None], [None], [None])
|
||||
else:
|
||||
offsets = arr.offsets_from_codes(codes)
|
||||
outer_offsets = arr.outer_offsets_from_list_of_codes(filled[1])
|
||||
ret2 = ([points], [offsets], [outer_offsets])
|
||||
return ret2
|
||||
else:
|
||||
raise ValueError(f"Invalid FillType {fill_type_to}")
|
||||
|
||||
|
||||
def _convert_filled_from_OuterOffset(
|
||||
filled: cpy.FillReturn_OuterOffset,
|
||||
fill_type_to: FillType,
|
||||
) -> cpy.FillReturn:
|
||||
if fill_type_to == FillType.OuterCode:
|
||||
separate_codes = [arr.codes_from_offsets(offsets) for offsets in filled[1]]
|
||||
return (filled[0], separate_codes)
|
||||
elif fill_type_to == FillType.OuterOffset:
|
||||
return filled
|
||||
|
||||
if len(filled[0]) > 0:
|
||||
points = arr.concat_points(filled[0])
|
||||
offsets = arr.concat_offsets(filled[1])
|
||||
else:
|
||||
points = None
|
||||
offsets = None
|
||||
|
||||
if fill_type_to == FillType.ChunkCombinedCode:
|
||||
return ([points], [None if offsets is None else arr.codes_from_offsets(offsets)])
|
||||
elif fill_type_to == FillType.ChunkCombinedOffset:
|
||||
return ([points], [offsets])
|
||||
elif fill_type_to == FillType.ChunkCombinedCodeOffset:
|
||||
if offsets is None:
|
||||
ret1: cpy.FillReturn_ChunkCombinedCodeOffset = ([None], [None], [None])
|
||||
else:
|
||||
codes = arr.codes_from_offsets(offsets)
|
||||
outer_offsets = arr.offsets_from_lengths(filled[0])
|
||||
ret1 = ([points], [codes], [outer_offsets])
|
||||
return ret1
|
||||
elif fill_type_to == FillType.ChunkCombinedOffsetOffset:
|
||||
if points is None:
|
||||
ret2: cpy.FillReturn_ChunkCombinedOffsetOffset = ([None], [None], [None])
|
||||
else:
|
||||
outer_offsets = arr.outer_offsets_from_list_of_offsets(filled[1])
|
||||
ret2 = ([points], [offsets], [outer_offsets])
|
||||
return ret2
|
||||
else:
|
||||
raise ValueError(f"Invalid FillType {fill_type_to}")
|
||||
|
||||
|
||||
def _convert_filled_from_ChunkCombinedCode(
|
||||
filled: cpy.FillReturn_ChunkCombinedCode,
|
||||
fill_type_to: FillType,
|
||||
) -> cpy.FillReturn:
|
||||
if fill_type_to == FillType.ChunkCombinedCode:
|
||||
return filled
|
||||
elif fill_type_to == FillType.ChunkCombinedOffset:
|
||||
codes = [None if codes is None else arr.offsets_from_codes(codes) for codes in filled[1]]
|
||||
return (filled[0], codes)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Conversion from {FillType.ChunkCombinedCode} to {fill_type_to} not supported")
|
||||
|
||||
|
||||
def _convert_filled_from_ChunkCombinedOffset(
|
||||
filled: cpy.FillReturn_ChunkCombinedOffset,
|
||||
fill_type_to: FillType,
|
||||
) -> cpy.FillReturn:
|
||||
if fill_type_to == FillType.ChunkCombinedCode:
|
||||
chunk_codes: list[cpy.CodeArray | None] = []
|
||||
for points, offsets in zip(*filled):
|
||||
if points is None:
|
||||
chunk_codes.append(None)
|
||||
else:
|
||||
if TYPE_CHECKING:
|
||||
assert offsets is not None
|
||||
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
|
||||
return (filled[0], chunk_codes)
|
||||
elif fill_type_to == FillType.ChunkCombinedOffset:
|
||||
return filled
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Conversion from {FillType.ChunkCombinedOffset} to {fill_type_to} not supported")
|
||||
|
||||
|
||||
def _convert_filled_from_ChunkCombinedCodeOffset(
|
||||
filled: cpy.FillReturn_ChunkCombinedCodeOffset,
|
||||
fill_type_to: FillType,
|
||||
) -> cpy.FillReturn:
|
||||
if fill_type_to == FillType.OuterCode:
|
||||
separate_points = []
|
||||
separate_codes = []
|
||||
for points, codes, outer_offsets in zip(*filled):
|
||||
if points is not None:
|
||||
if TYPE_CHECKING:
|
||||
assert codes is not None
|
||||
assert outer_offsets is not None
|
||||
separate_points += arr.split_points_by_offsets(points, outer_offsets)
|
||||
separate_codes += arr.split_codes_by_offsets(codes, outer_offsets)
|
||||
return (separate_points, separate_codes)
|
||||
elif fill_type_to == FillType.OuterOffset:
|
||||
separate_points = []
|
||||
separate_offsets = []
|
||||
for points, codes, outer_offsets in zip(*filled):
|
||||
if points is not None:
|
||||
if TYPE_CHECKING:
|
||||
assert codes is not None
|
||||
assert outer_offsets is not None
|
||||
separate_points += arr.split_points_by_offsets(points, outer_offsets)
|
||||
separate_codes = arr.split_codes_by_offsets(codes, outer_offsets)
|
||||
separate_offsets += [arr.offsets_from_codes(codes) for codes in separate_codes]
|
||||
return (separate_points, separate_offsets)
|
||||
elif fill_type_to == FillType.ChunkCombinedCode:
|
||||
ret1: cpy.FillReturn_ChunkCombinedCode = (filled[0], filled[1])
|
||||
return ret1
|
||||
elif fill_type_to == FillType.ChunkCombinedOffset:
|
||||
all_offsets = [None if codes is None else arr.offsets_from_codes(codes)
|
||||
for codes in filled[1]]
|
||||
ret2: cpy.FillReturn_ChunkCombinedOffset = (filled[0], all_offsets)
|
||||
return ret2
|
||||
elif fill_type_to == FillType.ChunkCombinedCodeOffset:
|
||||
return filled
|
||||
elif fill_type_to == FillType.ChunkCombinedOffsetOffset:
|
||||
chunk_offsets: list[cpy.OffsetArray | None] = []
|
||||
chunk_outer_offsets: list[cpy.OffsetArray | None] = []
|
||||
for codes, outer_offsets in zip(*filled[1:]):
|
||||
if codes is None:
|
||||
chunk_offsets.append(None)
|
||||
chunk_outer_offsets.append(None)
|
||||
else:
|
||||
if TYPE_CHECKING:
|
||||
assert outer_offsets is not None
|
||||
offsets = arr.offsets_from_codes(codes)
|
||||
outer_offsets = np.array([np.nonzero(offsets == oo)[0][0] for oo in outer_offsets],
|
||||
dtype=offset_dtype)
|
||||
chunk_offsets.append(offsets)
|
||||
chunk_outer_offsets.append(outer_offsets)
|
||||
ret3: cpy.FillReturn_ChunkCombinedOffsetOffset = (
|
||||
filled[0], chunk_offsets, chunk_outer_offsets,
|
||||
)
|
||||
return ret3
|
||||
else:
|
||||
raise ValueError(f"Invalid FillType {fill_type_to}")
|
||||
|
||||
|
||||
def _convert_filled_from_ChunkCombinedOffsetOffset(
|
||||
filled: cpy.FillReturn_ChunkCombinedOffsetOffset,
|
||||
fill_type_to: FillType,
|
||||
) -> cpy.FillReturn:
|
||||
if fill_type_to == FillType.OuterCode:
|
||||
separate_points = []
|
||||
separate_codes = []
|
||||
for points, offsets, outer_offsets in zip(*filled):
|
||||
if points is not None:
|
||||
if TYPE_CHECKING:
|
||||
assert offsets is not None
|
||||
assert outer_offsets is not None
|
||||
codes = arr.codes_from_offsets_and_points(offsets, points)
|
||||
outer_offsets = offsets[outer_offsets]
|
||||
separate_points += arr.split_points_by_offsets(points, outer_offsets)
|
||||
separate_codes += arr.split_codes_by_offsets(codes, outer_offsets)
|
||||
return (separate_points, separate_codes)
|
||||
elif fill_type_to == FillType.OuterOffset:
|
||||
separate_points = []
|
||||
separate_offsets = []
|
||||
for points, offsets, outer_offsets in zip(*filled):
|
||||
if points is not None:
|
||||
if TYPE_CHECKING:
|
||||
assert offsets is not None
|
||||
assert outer_offsets is not None
|
||||
if len(outer_offsets) > 2:
|
||||
separate_offsets += [offsets[s:e+1] - offsets[s] for s, e in
|
||||
pairwise(outer_offsets)]
|
||||
else:
|
||||
separate_offsets.append(offsets)
|
||||
separate_points += arr.split_points_by_offsets(points, offsets[outer_offsets])
|
||||
return (separate_points, separate_offsets)
|
||||
elif fill_type_to == FillType.ChunkCombinedCode:
|
||||
chunk_codes: list[cpy.CodeArray | None] = []
|
||||
for points, offsets, outer_offsets in zip(*filled):
|
||||
if points is None:
|
||||
chunk_codes.append(None)
|
||||
else:
|
||||
if TYPE_CHECKING:
|
||||
assert offsets is not None
|
||||
assert outer_offsets is not None
|
||||
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
|
||||
ret1: cpy.FillReturn_ChunkCombinedCode = (filled[0], chunk_codes)
|
||||
return ret1
|
||||
elif fill_type_to == FillType.ChunkCombinedOffset:
|
||||
return (filled[0], filled[1])
|
||||
elif fill_type_to == FillType.ChunkCombinedCodeOffset:
|
||||
chunk_codes = []
|
||||
chunk_outer_offsets: list[cpy.OffsetArray | None] = []
|
||||
for points, offsets, outer_offsets in zip(*filled):
|
||||
if points is None:
|
||||
chunk_codes.append(None)
|
||||
chunk_outer_offsets.append(None)
|
||||
else:
|
||||
if TYPE_CHECKING:
|
||||
assert offsets is not None
|
||||
assert outer_offsets is not None
|
||||
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
|
||||
chunk_outer_offsets.append(offsets[outer_offsets])
|
||||
ret2: cpy.FillReturn_ChunkCombinedCodeOffset = (filled[0], chunk_codes, chunk_outer_offsets)
|
||||
return ret2
|
||||
elif fill_type_to == FillType.ChunkCombinedOffsetOffset:
|
||||
return filled
|
||||
else:
|
||||
raise ValueError(f"Invalid FillType {fill_type_to}")
|
||||
|
||||
|
||||
def convert_filled(
|
||||
filled: cpy.FillReturn,
|
||||
fill_type_from: FillType | str,
|
||||
fill_type_to: FillType | str,
|
||||
) -> cpy.FillReturn:
|
||||
"""Convert filled contours from one :class:`~.FillType` to another.
|
||||
|
||||
Args:
|
||||
filled (sequence of arrays): Filled contour polygons to convert, such as those returned by
|
||||
:meth:`.ContourGenerator.filled`.
|
||||
fill_type_from (FillType or str): :class:`~.FillType` to convert from as enum or
|
||||
string equivalent.
|
||||
fill_type_to (FillType or str): :class:`~.FillType` to convert to as enum or string
|
||||
equivalent.
|
||||
|
||||
Return:
|
||||
Converted filled contour polygons.
|
||||
|
||||
When converting non-chunked fill types (``FillType.OuterCode`` or ``FillType.OuterOffset``) to
|
||||
chunked ones, all polygons are placed in the first chunk. When converting in the other
|
||||
direction, all chunk information is discarded. Converting a fill type that is not aware of the
|
||||
relationship between outer boundaries and contained holes (``FillType.ChunkCombinedCode`` or
|
||||
``FillType.ChunkCombinedOffset``) to one that is will raise a ``ValueError``.
|
||||
|
||||
.. versionadded:: 1.2.0
|
||||
"""
|
||||
fill_type_from = as_fill_type(fill_type_from)
|
||||
fill_type_to = as_fill_type(fill_type_to)
|
||||
|
||||
check_filled(filled, fill_type_from)
|
||||
|
||||
if fill_type_from == FillType.OuterCode:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_OuterCode, filled)
|
||||
return _convert_filled_from_OuterCode(filled, fill_type_to)
|
||||
elif fill_type_from == FillType.OuterOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_OuterOffset, filled)
|
||||
return _convert_filled_from_OuterOffset(filled, fill_type_to)
|
||||
elif fill_type_from == FillType.ChunkCombinedCode:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedCode, filled)
|
||||
return _convert_filled_from_ChunkCombinedCode(filled, fill_type_to)
|
||||
elif fill_type_from == FillType.ChunkCombinedOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedOffset, filled)
|
||||
return _convert_filled_from_ChunkCombinedOffset(filled, fill_type_to)
|
||||
elif fill_type_from == FillType.ChunkCombinedCodeOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedCodeOffset, filled)
|
||||
return _convert_filled_from_ChunkCombinedCodeOffset(filled, fill_type_to)
|
||||
elif fill_type_from == FillType.ChunkCombinedOffsetOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedOffsetOffset, filled)
|
||||
return _convert_filled_from_ChunkCombinedOffsetOffset(filled, fill_type_to)
|
||||
else:
|
||||
raise ValueError(f"Invalid FillType {fill_type_from}")
|
||||
|
||||
|
||||
def _convert_lines_from_Separate(
|
||||
lines: cpy.LineReturn_Separate,
|
||||
line_type_to: LineType,
|
||||
) -> cpy.LineReturn:
|
||||
if line_type_to == LineType.Separate:
|
||||
return lines
|
||||
elif line_type_to == LineType.SeparateCode:
|
||||
separate_codes = [arr.codes_from_points(line) for line in lines]
|
||||
return (lines, separate_codes)
|
||||
elif line_type_to == LineType.ChunkCombinedCode:
|
||||
if not lines:
|
||||
ret1: cpy.LineReturn_ChunkCombinedCode = ([None], [None])
|
||||
else:
|
||||
points = arr.concat_points(lines)
|
||||
offsets = arr.offsets_from_lengths(lines)
|
||||
codes = arr.codes_from_offsets_and_points(offsets, points)
|
||||
ret1 = ([points], [codes])
|
||||
return ret1
|
||||
elif line_type_to == LineType.ChunkCombinedOffset:
|
||||
if not lines:
|
||||
ret2: cpy.LineReturn_ChunkCombinedOffset = ([None], [None])
|
||||
else:
|
||||
ret2 = ([arr.concat_points(lines)], [arr.offsets_from_lengths(lines)])
|
||||
return ret2
|
||||
elif line_type_to == LineType.ChunkCombinedNan:
|
||||
if not lines:
|
||||
ret3: cpy.LineReturn_ChunkCombinedNan = ([None],)
|
||||
else:
|
||||
ret3 = ([arr.concat_points_with_nan(lines)],)
|
||||
return ret3
|
||||
else:
|
||||
raise ValueError(f"Invalid LineType {line_type_to}")
|
||||
|
||||
|
||||
def _convert_lines_from_SeparateCode(
|
||||
lines: cpy.LineReturn_SeparateCode,
|
||||
line_type_to: LineType,
|
||||
) -> cpy.LineReturn:
|
||||
if line_type_to == LineType.Separate:
|
||||
# Drop codes.
|
||||
return lines[0]
|
||||
elif line_type_to == LineType.SeparateCode:
|
||||
return lines
|
||||
elif line_type_to == LineType.ChunkCombinedCode:
|
||||
if not lines[0]:
|
||||
ret1: cpy.LineReturn_ChunkCombinedCode = ([None], [None])
|
||||
else:
|
||||
ret1 = ([arr.concat_points(lines[0])], [arr.concat_codes(lines[1])])
|
||||
return ret1
|
||||
elif line_type_to == LineType.ChunkCombinedOffset:
|
||||
if not lines[0]:
|
||||
ret2: cpy.LineReturn_ChunkCombinedOffset = ([None], [None])
|
||||
else:
|
||||
ret2 = ([arr.concat_points(lines[0])], [arr.offsets_from_lengths(lines[0])])
|
||||
return ret2
|
||||
elif line_type_to == LineType.ChunkCombinedNan:
|
||||
if not lines[0]:
|
||||
ret3: cpy.LineReturn_ChunkCombinedNan = ([None],)
|
||||
else:
|
||||
ret3 = ([arr.concat_points_with_nan(lines[0])],)
|
||||
return ret3
|
||||
else:
|
||||
raise ValueError(f"Invalid LineType {line_type_to}")
|
||||
|
||||
|
||||
def _convert_lines_from_ChunkCombinedCode(
|
||||
lines: cpy.LineReturn_ChunkCombinedCode,
|
||||
line_type_to: LineType,
|
||||
) -> cpy.LineReturn:
|
||||
if line_type_to in (LineType.Separate, LineType.SeparateCode):
|
||||
separate_lines = []
|
||||
for points, codes in zip(*lines):
|
||||
if points is not None:
|
||||
if TYPE_CHECKING:
|
||||
assert codes is not None
|
||||
split_at = np.nonzero(codes == MOVETO)[0]
|
||||
if len(split_at) > 1:
|
||||
separate_lines += np.split(points, split_at[1:])
|
||||
else:
|
||||
separate_lines.append(points)
|
||||
if line_type_to == LineType.Separate:
|
||||
return separate_lines
|
||||
else:
|
||||
separate_codes = [arr.codes_from_points(line) for line in separate_lines]
|
||||
return (separate_lines, separate_codes)
|
||||
elif line_type_to == LineType.ChunkCombinedCode:
|
||||
return lines
|
||||
elif line_type_to == LineType.ChunkCombinedOffset:
|
||||
chunk_offsets = [None if codes is None else arr.offsets_from_codes(codes)
|
||||
for codes in lines[1]]
|
||||
return (lines[0], chunk_offsets)
|
||||
elif line_type_to == LineType.ChunkCombinedNan:
|
||||
points_nan: list[cpy.PointArray | None] = []
|
||||
for points, codes in zip(*lines):
|
||||
if points is None:
|
||||
points_nan.append(None)
|
||||
else:
|
||||
if TYPE_CHECKING:
|
||||
assert codes is not None
|
||||
offsets = arr.offsets_from_codes(codes)
|
||||
points_nan.append(arr.insert_nan_at_offsets(points, offsets))
|
||||
return (points_nan,)
|
||||
else:
|
||||
raise ValueError(f"Invalid LineType {line_type_to}")
|
||||
|
||||
|
||||
def _convert_lines_from_ChunkCombinedOffset(
|
||||
lines: cpy.LineReturn_ChunkCombinedOffset,
|
||||
line_type_to: LineType,
|
||||
) -> cpy.LineReturn:
|
||||
if line_type_to in (LineType.Separate, LineType.SeparateCode):
|
||||
separate_lines = []
|
||||
for points, offsets in zip(*lines):
|
||||
if points is not None:
|
||||
if TYPE_CHECKING:
|
||||
assert offsets is not None
|
||||
separate_lines += arr.split_points_by_offsets(points, offsets)
|
||||
if line_type_to == LineType.Separate:
|
||||
return separate_lines
|
||||
else:
|
||||
separate_codes = [arr.codes_from_points(line) for line in separate_lines]
|
||||
return (separate_lines, separate_codes)
|
||||
elif line_type_to == LineType.ChunkCombinedCode:
|
||||
chunk_codes: list[cpy.CodeArray | None] = []
|
||||
for points, offsets in zip(*lines):
|
||||
if points is None:
|
||||
chunk_codes.append(None)
|
||||
else:
|
||||
if TYPE_CHECKING:
|
||||
assert offsets is not None
|
||||
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
|
||||
return (lines[0], chunk_codes)
|
||||
elif line_type_to == LineType.ChunkCombinedOffset:
|
||||
return lines
|
||||
elif line_type_to == LineType.ChunkCombinedNan:
|
||||
points_nan: list[cpy.PointArray | None] = []
|
||||
for points, offsets in zip(*lines):
|
||||
if points is None:
|
||||
points_nan.append(None)
|
||||
else:
|
||||
if TYPE_CHECKING:
|
||||
assert offsets is not None
|
||||
points_nan.append(arr.insert_nan_at_offsets(points, offsets))
|
||||
return (points_nan,)
|
||||
else:
|
||||
raise ValueError(f"Invalid LineType {line_type_to}")
|
||||
|
||||
|
||||
def _convert_lines_from_ChunkCombinedNan(
|
||||
lines: cpy.LineReturn_ChunkCombinedNan,
|
||||
line_type_to: LineType,
|
||||
) -> cpy.LineReturn:
|
||||
if line_type_to in (LineType.Separate, LineType.SeparateCode):
|
||||
separate_lines = []
|
||||
for points in lines[0]:
|
||||
if points is not None:
|
||||
separate_lines += arr.split_points_at_nan(points)
|
||||
if line_type_to == LineType.Separate:
|
||||
return separate_lines
|
||||
else:
|
||||
separate_codes = [arr.codes_from_points(points) for points in separate_lines]
|
||||
return (separate_lines, separate_codes)
|
||||
elif line_type_to == LineType.ChunkCombinedCode:
|
||||
chunk_points: list[cpy.PointArray | None] = []
|
||||
chunk_codes: list[cpy.CodeArray | None] = []
|
||||
for points in lines[0]:
|
||||
if points is None:
|
||||
chunk_points.append(None)
|
||||
chunk_codes.append(None)
|
||||
else:
|
||||
points, offsets = arr.remove_nan(points)
|
||||
chunk_points.append(points)
|
||||
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
|
||||
return (chunk_points, chunk_codes)
|
||||
elif line_type_to == LineType.ChunkCombinedOffset:
|
||||
chunk_points = []
|
||||
chunk_offsets: list[cpy.OffsetArray | None] = []
|
||||
for points in lines[0]:
|
||||
if points is None:
|
||||
chunk_points.append(None)
|
||||
chunk_offsets.append(None)
|
||||
else:
|
||||
points, offsets = arr.remove_nan(points)
|
||||
chunk_points.append(points)
|
||||
chunk_offsets.append(offsets)
|
||||
return (chunk_points, chunk_offsets)
|
||||
elif line_type_to == LineType.ChunkCombinedNan:
|
||||
return lines
|
||||
else:
|
||||
raise ValueError(f"Invalid LineType {line_type_to}")
|
||||
|
||||
|
||||
def convert_lines(
|
||||
lines: cpy.LineReturn,
|
||||
line_type_from: LineType | str,
|
||||
line_type_to: LineType | str,
|
||||
) -> cpy.LineReturn:
|
||||
"""Convert contour lines from one :class:`~.LineType` to another.
|
||||
|
||||
Args:
|
||||
lines (sequence of arrays): Contour lines to convert, such as those returned by
|
||||
:meth:`.ContourGenerator.lines`.
|
||||
line_type_from (LineType or str): :class:`~.LineType` to convert from as enum or
|
||||
string equivalent.
|
||||
line_type_to (LineType or str): :class:`~.LineType` to convert to as enum or string
|
||||
equivalent.
|
||||
|
||||
Return:
|
||||
Converted contour lines.
|
||||
|
||||
When converting non-chunked line types (``LineType.Separate`` or ``LineType.SeparateCode``) to
|
||||
chunked ones (``LineType.ChunkCombinedCode``, ``LineType.ChunkCombinedOffset`` or
|
||||
``LineType.ChunkCombinedNan``), all lines are placed in the first chunk. When converting in the
|
||||
other direction, all chunk information is discarded.
|
||||
|
||||
.. versionadded:: 1.2.0
|
||||
"""
|
||||
line_type_from = as_line_type(line_type_from)
|
||||
line_type_to = as_line_type(line_type_to)
|
||||
|
||||
check_lines(lines, line_type_from)
|
||||
|
||||
if line_type_from == LineType.Separate:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_Separate, lines)
|
||||
return _convert_lines_from_Separate(lines, line_type_to)
|
||||
elif line_type_from == LineType.SeparateCode:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_SeparateCode, lines)
|
||||
return _convert_lines_from_SeparateCode(lines, line_type_to)
|
||||
elif line_type_from == LineType.ChunkCombinedCode:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedCode, lines)
|
||||
return _convert_lines_from_ChunkCombinedCode(lines, line_type_to)
|
||||
elif line_type_from == LineType.ChunkCombinedOffset:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedOffset, lines)
|
||||
return _convert_lines_from_ChunkCombinedOffset(lines, line_type_to)
|
||||
elif line_type_from == LineType.ChunkCombinedNan:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedNan, lines)
|
||||
return _convert_lines_from_ChunkCombinedNan(lines, line_type_to)
|
||||
else:
|
||||
raise ValueError(f"Invalid LineType {line_type_from}")
|
||||
|
||||
|
||||
def convert_multi_filled(
|
||||
multi_filled: list[cpy.FillReturn],
|
||||
fill_type_from: FillType | str,
|
||||
fill_type_to: FillType | str,
|
||||
) -> list[cpy.FillReturn]:
|
||||
"""Convert multiple sets of filled contours from one :class:`~.FillType` to another.
|
||||
|
||||
Args:
|
||||
multi_filled (nested sequence of arrays): Filled contour polygons to convert, such as those
|
||||
returned by :meth:`.ContourGenerator.multi_filled`.
|
||||
fill_type_from (FillType or str): :class:`~.FillType` to convert from as enum or
|
||||
string equivalent.
|
||||
fill_type_to (FillType or str): :class:`~.FillType` to convert to as enum or string
|
||||
equivalent.
|
||||
|
||||
Return:
|
||||
Converted sets filled contour polygons.
|
||||
|
||||
When converting non-chunked fill types (``FillType.OuterCode`` or ``FillType.OuterOffset``) to
|
||||
chunked ones, all polygons are placed in the first chunk. When converting in the other
|
||||
direction, all chunk information is discarded. Converting a fill type that is not aware of the
|
||||
relationship between outer boundaries and contained holes (``FillType.ChunkCombinedCode`` or
|
||||
``FillType.ChunkCombinedOffset``) to one that is will raise a ``ValueError``.
|
||||
|
||||
.. versionadded:: 1.3.0
|
||||
"""
|
||||
fill_type_from = as_fill_type(fill_type_from)
|
||||
fill_type_to = as_fill_type(fill_type_to)
|
||||
|
||||
return [convert_filled(filled, fill_type_from, fill_type_to) for filled in multi_filled]
|
||||
|
||||
|
||||
def convert_multi_lines(
|
||||
multi_lines: list[cpy.LineReturn],
|
||||
line_type_from: LineType | str,
|
||||
line_type_to: LineType | str,
|
||||
) -> list[cpy.LineReturn]:
|
||||
"""Convert multiple sets of contour lines from one :class:`~.LineType` to another.
|
||||
|
||||
Args:
|
||||
multi_lines (nested sequence of arrays): Contour lines to convert, such as those returned by
|
||||
:meth:`.ContourGenerator.multi_lines`.
|
||||
line_type_from (LineType or str): :class:`~.LineType` to convert from as enum or
|
||||
string equivalent.
|
||||
line_type_to (LineType or str): :class:`~.LineType` to convert to as enum or string
|
||||
equivalent.
|
||||
|
||||
Return:
|
||||
Converted set of contour lines.
|
||||
|
||||
When converting non-chunked line types (``LineType.Separate`` or ``LineType.SeparateCode``) to
|
||||
chunked ones (``LineType.ChunkCombinedCode``, ``LineType.ChunkCombinedOffset`` or
|
||||
``LineType.ChunkCombinedNan``), all lines are placed in the first chunk. When converting in the
|
||||
other direction, all chunk information is discarded.
|
||||
|
||||
.. versionadded:: 1.3.0
|
||||
"""
|
||||
line_type_from = as_line_type(line_type_from)
|
||||
line_type_to = as_line_type(line_type_to)
|
||||
|
||||
return [convert_lines(lines, line_type_from, line_type_to) for lines in multi_lines]
|
||||
207
venv/lib/python3.12/site-packages/contourpy/dechunk.py
Normal file
207
venv/lib/python3.12/site-packages/contourpy/dechunk.py
Normal file
@ -0,0 +1,207 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, cast
|
||||
|
||||
from contourpy._contourpy import FillType, LineType
|
||||
from contourpy.array import (
|
||||
concat_codes_or_none,
|
||||
concat_offsets_or_none,
|
||||
concat_points_or_none,
|
||||
concat_points_or_none_with_nan,
|
||||
)
|
||||
from contourpy.enum_util import as_fill_type, as_line_type
|
||||
from contourpy.typecheck import check_filled, check_lines
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import contourpy._contourpy as cpy
|
||||
|
||||
|
||||
def dechunk_filled(filled: cpy.FillReturn, fill_type: FillType | str) -> cpy.FillReturn:
|
||||
"""Return the specified filled contours with chunked data moved into the first chunk.
|
||||
|
||||
Filled contours that are not chunked (``FillType.OuterCode`` and ``FillType.OuterOffset``) and
|
||||
those that are but only contain a single chunk are returned unmodified. Individual polygons are
|
||||
unchanged, they are not geometrically combined.
|
||||
|
||||
Args:
|
||||
filled (sequence of arrays): Filled contour data, such as returned by
|
||||
:meth:`.ContourGenerator.filled`.
|
||||
fill_type (FillType or str): Type of :meth:`~.ContourGenerator.filled` as enum or string
|
||||
equivalent.
|
||||
|
||||
Return:
|
||||
Filled contours in a single chunk.
|
||||
|
||||
.. versionadded:: 1.2.0
|
||||
"""
|
||||
fill_type = as_fill_type(fill_type)
|
||||
|
||||
if fill_type in (FillType.OuterCode, FillType.OuterOffset):
|
||||
# No-op if fill_type is not chunked.
|
||||
return filled
|
||||
|
||||
check_filled(filled, fill_type)
|
||||
if len(filled[0]) < 2:
|
||||
# No-op if just one chunk.
|
||||
return filled
|
||||
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_Chunk, filled)
|
||||
points = concat_points_or_none(filled[0])
|
||||
|
||||
if fill_type == FillType.ChunkCombinedCode:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedCode, filled)
|
||||
if points is None:
|
||||
ret1: cpy.FillReturn_ChunkCombinedCode = ([None], [None])
|
||||
else:
|
||||
ret1 = ([points], [concat_codes_or_none(filled[1])])
|
||||
return ret1
|
||||
elif fill_type == FillType.ChunkCombinedOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedOffset, filled)
|
||||
if points is None:
|
||||
ret2: cpy.FillReturn_ChunkCombinedOffset = ([None], [None])
|
||||
else:
|
||||
ret2 = ([points], [concat_offsets_or_none(filled[1])])
|
||||
return ret2
|
||||
elif fill_type == FillType.ChunkCombinedCodeOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedCodeOffset, filled)
|
||||
if points is None:
|
||||
ret3: cpy.FillReturn_ChunkCombinedCodeOffset = ([None], [None], [None])
|
||||
else:
|
||||
outer_offsets = concat_offsets_or_none(filled[2])
|
||||
ret3 = ([points], [concat_codes_or_none(filled[1])], [outer_offsets])
|
||||
return ret3
|
||||
elif fill_type == FillType.ChunkCombinedOffsetOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedOffsetOffset, filled)
|
||||
if points is None:
|
||||
ret4: cpy.FillReturn_ChunkCombinedOffsetOffset = ([None], [None], [None])
|
||||
else:
|
||||
outer_offsets = concat_offsets_or_none(filled[2])
|
||||
ret4 = ([points], [concat_offsets_or_none(filled[1])], [outer_offsets])
|
||||
return ret4
|
||||
else:
|
||||
raise ValueError(f"Invalid FillType {fill_type}")
|
||||
|
||||
|
||||
def dechunk_lines(lines: cpy.LineReturn, line_type: LineType | str) -> cpy.LineReturn:
|
||||
"""Return the specified contour lines with chunked data moved into the first chunk.
|
||||
|
||||
Contour lines that are not chunked (``LineType.Separate`` and ``LineType.SeparateCode``) and
|
||||
those that are but only contain a single chunk are returned unmodified. Individual lines are
|
||||
unchanged, they are not geometrically combined.
|
||||
|
||||
Args:
|
||||
lines (sequence of arrays): Contour line data, such as returned by
|
||||
:meth:`.ContourGenerator.lines`.
|
||||
line_type (LineType or str): Type of :meth:`~.ContourGenerator.lines` as enum or string
|
||||
equivalent.
|
||||
|
||||
Return:
|
||||
Contour lines in a single chunk.
|
||||
|
||||
.. versionadded:: 1.2.0
|
||||
"""
|
||||
line_type = as_line_type(line_type)
|
||||
|
||||
if line_type in (LineType.Separate, LineType.SeparateCode):
|
||||
# No-op if line_type is not chunked.
|
||||
return lines
|
||||
|
||||
check_lines(lines, line_type)
|
||||
if len(lines[0]) < 2:
|
||||
# No-op if just one chunk.
|
||||
return lines
|
||||
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_Chunk, lines)
|
||||
|
||||
if line_type == LineType.ChunkCombinedCode:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedCode, lines)
|
||||
points = concat_points_or_none(lines[0])
|
||||
if points is None:
|
||||
ret1: cpy.LineReturn_ChunkCombinedCode = ([None], [None])
|
||||
else:
|
||||
ret1 = ([points], [concat_codes_or_none(lines[1])])
|
||||
return ret1
|
||||
elif line_type == LineType.ChunkCombinedOffset:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedOffset, lines)
|
||||
points = concat_points_or_none(lines[0])
|
||||
if points is None:
|
||||
ret2: cpy.LineReturn_ChunkCombinedOffset = ([None], [None])
|
||||
else:
|
||||
ret2 = ([points], [concat_offsets_or_none(lines[1])])
|
||||
return ret2
|
||||
elif line_type == LineType.ChunkCombinedNan:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedNan, lines)
|
||||
points = concat_points_or_none_with_nan(lines[0])
|
||||
ret3: cpy.LineReturn_ChunkCombinedNan = ([points],)
|
||||
return ret3
|
||||
else:
|
||||
raise ValueError(f"Invalid LineType {line_type}")
|
||||
|
||||
|
||||
def dechunk_multi_filled(
|
||||
multi_filled: list[cpy.FillReturn],
|
||||
fill_type: FillType | str,
|
||||
) -> list[cpy.FillReturn]:
|
||||
"""Return multiple sets of filled contours with chunked data moved into the first chunks.
|
||||
|
||||
Filled contours that are not chunked (``FillType.OuterCode`` and ``FillType.OuterOffset``) and
|
||||
those that are but only contain a single chunk are returned unmodified. Individual polygons are
|
||||
unchanged, they are not geometrically combined.
|
||||
|
||||
Args:
|
||||
multi_filled (nested sequence of arrays): Filled contour data, such as returned by
|
||||
:meth:`.ContourGenerator.multi_filled`.
|
||||
fill_type (FillType or str): Type of :meth:`~.ContourGenerator.filled` as enum or string
|
||||
equivalent.
|
||||
|
||||
Return:
|
||||
Multiple sets of filled contours in a single chunk.
|
||||
|
||||
.. versionadded:: 1.3.0
|
||||
"""
|
||||
fill_type = as_fill_type(fill_type)
|
||||
|
||||
if fill_type in (FillType.OuterCode, FillType.OuterOffset):
|
||||
# No-op if fill_type is not chunked.
|
||||
return multi_filled
|
||||
|
||||
return [dechunk_filled(filled, fill_type) for filled in multi_filled]
|
||||
|
||||
|
||||
def dechunk_multi_lines(
|
||||
multi_lines: list[cpy.LineReturn],
|
||||
line_type: LineType | str,
|
||||
) -> list[cpy.LineReturn]:
|
||||
"""Return multiple sets of contour lines with all chunked data moved into the first chunks.
|
||||
|
||||
Contour lines that are not chunked (``LineType.Separate`` and ``LineType.SeparateCode``) and
|
||||
those that are but only contain a single chunk are returned unmodified. Individual lines are
|
||||
unchanged, they are not geometrically combined.
|
||||
|
||||
Args:
|
||||
multi_lines (nested sequence of arrays): Contour line data, such as returned by
|
||||
:meth:`.ContourGenerator.multi_lines`.
|
||||
line_type (LineType or str): Type of :meth:`~.ContourGenerator.lines` as enum or string
|
||||
equivalent.
|
||||
|
||||
Return:
|
||||
Multiple sets of contour lines in a single chunk.
|
||||
|
||||
.. versionadded:: 1.3.0
|
||||
"""
|
||||
line_type = as_line_type(line_type)
|
||||
|
||||
if line_type in (LineType.Separate, LineType.SeparateCode):
|
||||
# No-op if line_type is not chunked.
|
||||
return multi_lines
|
||||
|
||||
return [dechunk_lines(lines, line_type) for lines in multi_lines]
|
||||
57
venv/lib/python3.12/site-packages/contourpy/enum_util.py
Normal file
57
venv/lib/python3.12/site-packages/contourpy/enum_util.py
Normal file
@ -0,0 +1,57 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from contourpy._contourpy import FillType, LineType, ZInterp
|
||||
|
||||
|
||||
def as_fill_type(fill_type: FillType | str) -> FillType:
|
||||
"""Coerce a FillType or string value to a FillType.
|
||||
|
||||
Args:
|
||||
fill_type (FillType or str): Value to convert.
|
||||
|
||||
Return:
|
||||
FillType: Converted value.
|
||||
"""
|
||||
if isinstance(fill_type, str):
|
||||
try:
|
||||
return FillType.__members__[fill_type]
|
||||
except KeyError as e:
|
||||
raise ValueError(f"'{fill_type}' is not a valid FillType") from e
|
||||
else:
|
||||
return fill_type
|
||||
|
||||
|
||||
def as_line_type(line_type: LineType | str) -> LineType:
|
||||
"""Coerce a LineType or string value to a LineType.
|
||||
|
||||
Args:
|
||||
line_type (LineType or str): Value to convert.
|
||||
|
||||
Return:
|
||||
LineType: Converted value.
|
||||
"""
|
||||
if isinstance(line_type, str):
|
||||
try:
|
||||
return LineType.__members__[line_type]
|
||||
except KeyError as e:
|
||||
raise ValueError(f"'{line_type}' is not a valid LineType") from e
|
||||
else:
|
||||
return line_type
|
||||
|
||||
|
||||
def as_z_interp(z_interp: ZInterp | str) -> ZInterp:
|
||||
"""Coerce a ZInterp or string value to a ZInterp.
|
||||
|
||||
Args:
|
||||
z_interp (ZInterp or str): Value to convert.
|
||||
|
||||
Return:
|
||||
ZInterp: Converted value.
|
||||
"""
|
||||
if isinstance(z_interp, str):
|
||||
try:
|
||||
return ZInterp.__members__[z_interp]
|
||||
except KeyError as e:
|
||||
raise ValueError(f"'{z_interp}' is not a valid ZInterp") from e
|
||||
else:
|
||||
return z_interp
|
||||
203
venv/lib/python3.12/site-packages/contourpy/typecheck.py
Normal file
203
venv/lib/python3.12/site-packages/contourpy/typecheck.py
Normal file
@ -0,0 +1,203 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any, cast
|
||||
|
||||
import numpy as np
|
||||
|
||||
from contourpy import FillType, LineType
|
||||
from contourpy.enum_util import as_fill_type, as_line_type
|
||||
from contourpy.types import MOVETO, code_dtype, offset_dtype, point_dtype
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import contourpy._contourpy as cpy
|
||||
|
||||
|
||||
# Minimalist array-checking functions that check dtype, ndims and shape only.
|
||||
# They do not walk the arrays to check the contents for performance reasons.
|
||||
def check_code_array(codes: Any) -> None:
|
||||
if not isinstance(codes, np.ndarray):
|
||||
raise TypeError(f"Expected numpy array not {type(codes)}")
|
||||
if codes.dtype != code_dtype:
|
||||
raise ValueError(f"Expected numpy array of dtype {code_dtype} not {codes.dtype}")
|
||||
if not (codes.ndim == 1 and len(codes) > 1):
|
||||
raise ValueError(f"Expected numpy array of shape (?,) not {codes.shape}")
|
||||
if codes[0] != MOVETO:
|
||||
raise ValueError(f"First element of code array must be {MOVETO}, not {codes[0]}")
|
||||
|
||||
|
||||
def check_offset_array(offsets: Any) -> None:
|
||||
if not isinstance(offsets, np.ndarray):
|
||||
raise TypeError(f"Expected numpy array not {type(offsets)}")
|
||||
if offsets.dtype != offset_dtype:
|
||||
raise ValueError(f"Expected numpy array of dtype {offset_dtype} not {offsets.dtype}")
|
||||
if not (offsets.ndim == 1 and len(offsets) > 1):
|
||||
raise ValueError(f"Expected numpy array of shape (?,) not {offsets.shape}")
|
||||
if offsets[0] != 0:
|
||||
raise ValueError(f"First element of offset array must be 0, not {offsets[0]}")
|
||||
|
||||
|
||||
def check_point_array(points: Any) -> None:
|
||||
if not isinstance(points, np.ndarray):
|
||||
raise TypeError(f"Expected numpy array not {type(points)}")
|
||||
if points.dtype != point_dtype:
|
||||
raise ValueError(f"Expected numpy array of dtype {point_dtype} not {points.dtype}")
|
||||
if not (points.ndim == 2 and points.shape[1] ==2 and points.shape[0] > 1):
|
||||
raise ValueError(f"Expected numpy array of shape (?, 2) not {points.shape}")
|
||||
|
||||
|
||||
def _check_tuple_of_lists_with_same_length(
|
||||
maybe_tuple: Any,
|
||||
tuple_length: int,
|
||||
allow_empty_lists: bool = True,
|
||||
) -> None:
|
||||
if not isinstance(maybe_tuple, tuple):
|
||||
raise TypeError(f"Expected tuple not {type(maybe_tuple)}")
|
||||
if len(maybe_tuple) != tuple_length:
|
||||
raise ValueError(f"Expected tuple of length {tuple_length} not {len(maybe_tuple)}")
|
||||
for maybe_list in maybe_tuple:
|
||||
if not isinstance(maybe_list, list):
|
||||
msg = f"Expected tuple to contain {tuple_length} lists but found a {type(maybe_list)}"
|
||||
raise TypeError(msg)
|
||||
lengths = [len(item) for item in maybe_tuple]
|
||||
if len(set(lengths)) != 1:
|
||||
msg = f"Expected {tuple_length} lists with same length but lengths are {lengths}"
|
||||
raise ValueError(msg)
|
||||
if not allow_empty_lists and lengths[0] == 0:
|
||||
raise ValueError(f"Expected {tuple_length} non-empty lists")
|
||||
|
||||
|
||||
def check_filled(filled: cpy.FillReturn, fill_type: FillType | str) -> None:
|
||||
fill_type = as_fill_type(fill_type)
|
||||
|
||||
if fill_type == FillType.OuterCode:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_OuterCode, filled)
|
||||
_check_tuple_of_lists_with_same_length(filled, 2)
|
||||
for i, (points, codes) in enumerate(zip(*filled)):
|
||||
check_point_array(points)
|
||||
check_code_array(codes)
|
||||
if len(points) != len(codes):
|
||||
raise ValueError(f"Points and codes have different lengths in polygon {i}")
|
||||
elif fill_type == FillType.OuterOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_OuterOffset, filled)
|
||||
_check_tuple_of_lists_with_same_length(filled, 2)
|
||||
for i, (points, offsets) in enumerate(zip(*filled)):
|
||||
check_point_array(points)
|
||||
check_offset_array(offsets)
|
||||
if offsets[-1] != len(points):
|
||||
raise ValueError(f"Inconsistent points and offsets in polygon {i}")
|
||||
elif fill_type == FillType.ChunkCombinedCode:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedCode, filled)
|
||||
_check_tuple_of_lists_with_same_length(filled, 2, allow_empty_lists=False)
|
||||
for chunk, (points_or_none, codes_or_none) in enumerate(zip(*filled)):
|
||||
if points_or_none is not None and codes_or_none is not None:
|
||||
check_point_array(points_or_none)
|
||||
check_code_array(codes_or_none)
|
||||
if len(points_or_none) != len(codes_or_none):
|
||||
raise ValueError(f"Points and codes have different lengths in chunk {chunk}")
|
||||
elif not (points_or_none is None and codes_or_none is None):
|
||||
raise ValueError(f"Inconsistent Nones in chunk {chunk}")
|
||||
elif fill_type == FillType.ChunkCombinedOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedOffset, filled)
|
||||
_check_tuple_of_lists_with_same_length(filled, 2, allow_empty_lists=False)
|
||||
for chunk, (points_or_none, offsets_or_none) in enumerate(zip(*filled)):
|
||||
if points_or_none is not None and offsets_or_none is not None:
|
||||
check_point_array(points_or_none)
|
||||
check_offset_array(offsets_or_none)
|
||||
if offsets_or_none[-1] != len(points_or_none):
|
||||
raise ValueError(f"Inconsistent points and offsets in chunk {chunk}")
|
||||
elif not (points_or_none is None and offsets_or_none is None):
|
||||
raise ValueError(f"Inconsistent Nones in chunk {chunk}")
|
||||
elif fill_type == FillType.ChunkCombinedCodeOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedCodeOffset, filled)
|
||||
_check_tuple_of_lists_with_same_length(filled, 3, allow_empty_lists=False)
|
||||
for i, (points_or_none, codes_or_none, outer_offsets_or_none) in enumerate(zip(*filled)):
|
||||
if (points_or_none is not None and codes_or_none is not None and
|
||||
outer_offsets_or_none is not None):
|
||||
check_point_array(points_or_none)
|
||||
check_code_array(codes_or_none)
|
||||
check_offset_array(outer_offsets_or_none)
|
||||
if len(codes_or_none) != len(points_or_none):
|
||||
raise ValueError(f"Points and codes have different lengths in chunk {i}")
|
||||
if outer_offsets_or_none[-1] != len(codes_or_none):
|
||||
raise ValueError(f"Inconsistent codes and outer_offsets in chunk {i}")
|
||||
elif not (points_or_none is None and codes_or_none is None and
|
||||
outer_offsets_or_none is None):
|
||||
raise ValueError(f"Inconsistent Nones in chunk {i}")
|
||||
elif fill_type == FillType.ChunkCombinedOffsetOffset:
|
||||
if TYPE_CHECKING:
|
||||
filled = cast(cpy.FillReturn_ChunkCombinedOffsetOffset, filled)
|
||||
_check_tuple_of_lists_with_same_length(filled, 3, allow_empty_lists=False)
|
||||
for i, (points_or_none, offsets_or_none, outer_offsets_or_none) in enumerate(zip(*filled)):
|
||||
if (points_or_none is not None and offsets_or_none is not None and
|
||||
outer_offsets_or_none is not None):
|
||||
check_point_array(points_or_none)
|
||||
check_offset_array(offsets_or_none)
|
||||
check_offset_array(outer_offsets_or_none)
|
||||
if offsets_or_none[-1] != len(points_or_none):
|
||||
raise ValueError(f"Inconsistent points and offsets in chunk {i}")
|
||||
if outer_offsets_or_none[-1] != len(offsets_or_none) - 1:
|
||||
raise ValueError(f"Inconsistent offsets and outer_offsets in chunk {i}")
|
||||
elif not (points_or_none is None and offsets_or_none is None and
|
||||
outer_offsets_or_none is None):
|
||||
raise ValueError(f"Inconsistent Nones in chunk {i}")
|
||||
else:
|
||||
raise ValueError(f"Invalid FillType {fill_type}")
|
||||
|
||||
|
||||
def check_lines(lines: cpy.LineReturn, line_type: LineType | str) -> None:
|
||||
line_type = as_line_type(line_type)
|
||||
|
||||
if line_type == LineType.Separate:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_Separate, lines)
|
||||
if not isinstance(lines, list):
|
||||
raise TypeError(f"Expected list not {type(lines)}")
|
||||
for points in lines:
|
||||
check_point_array(points)
|
||||
elif line_type == LineType.SeparateCode:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_SeparateCode, lines)
|
||||
_check_tuple_of_lists_with_same_length(lines, 2)
|
||||
for i, (points, codes) in enumerate(zip(*lines)):
|
||||
check_point_array(points)
|
||||
check_code_array(codes)
|
||||
if len(points) != len(codes):
|
||||
raise ValueError(f"Points and codes have different lengths in line {i}")
|
||||
elif line_type == LineType.ChunkCombinedCode:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedCode, lines)
|
||||
_check_tuple_of_lists_with_same_length(lines, 2, allow_empty_lists=False)
|
||||
for chunk, (points_or_none, codes_or_none) in enumerate(zip(*lines)):
|
||||
if points_or_none is not None and codes_or_none is not None:
|
||||
check_point_array(points_or_none)
|
||||
check_code_array(codes_or_none)
|
||||
if len(points_or_none) != len(codes_or_none):
|
||||
raise ValueError(f"Points and codes have different lengths in chunk {chunk}")
|
||||
elif not (points_or_none is None and codes_or_none is None):
|
||||
raise ValueError(f"Inconsistent Nones in chunk {chunk}")
|
||||
elif line_type == LineType.ChunkCombinedOffset:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedOffset, lines)
|
||||
_check_tuple_of_lists_with_same_length(lines, 2, allow_empty_lists=False)
|
||||
for chunk, (points_or_none, offsets_or_none) in enumerate(zip(*lines)):
|
||||
if points_or_none is not None and offsets_or_none is not None:
|
||||
check_point_array(points_or_none)
|
||||
check_offset_array(offsets_or_none)
|
||||
if offsets_or_none[-1] != len(points_or_none):
|
||||
raise ValueError(f"Inconsistent points and offsets in chunk {chunk}")
|
||||
elif not (points_or_none is None and offsets_or_none is None):
|
||||
raise ValueError(f"Inconsistent Nones in chunk {chunk}")
|
||||
elif line_type == LineType.ChunkCombinedNan:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(cpy.LineReturn_ChunkCombinedNan, lines)
|
||||
_check_tuple_of_lists_with_same_length(lines, 1, allow_empty_lists=False)
|
||||
for _chunk, points_or_none in enumerate(lines[0]):
|
||||
if points_or_none is not None:
|
||||
check_point_array(points_or_none)
|
||||
else:
|
||||
raise ValueError(f"Invalid LineType {line_type}")
|
||||
13
venv/lib/python3.12/site-packages/contourpy/types.py
Normal file
13
venv/lib/python3.12/site-packages/contourpy/types.py
Normal file
@ -0,0 +1,13 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
|
||||
# dtypes of arrays returned by ContourPy.
|
||||
point_dtype = np.float64
|
||||
code_dtype = np.uint8
|
||||
offset_dtype = np.uint32
|
||||
|
||||
# Kind codes used in Matplotlib Paths.
|
||||
MOVETO = 1
|
||||
LINETO = 2
|
||||
CLOSEPOLY = 79
|
||||
@ -0,0 +1,5 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from contourpy.util._build_config import build_config
|
||||
|
||||
__all__ = ["build_config"]
|
||||
@ -0,0 +1,60 @@
|
||||
# _build_config.py.in is converted into _build_config.py during the meson build process.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def build_config() -> dict[str, str]:
|
||||
"""
|
||||
Return a dictionary containing build configuration settings.
|
||||
|
||||
All dictionary keys and values are strings, for example ``False`` is
|
||||
returned as ``"False"``.
|
||||
|
||||
.. versionadded:: 1.1.0
|
||||
"""
|
||||
return dict(
|
||||
# Python settings
|
||||
python_version="3.12",
|
||||
python_install_dir=r"/usr/local/lib/python3.12/site-packages/",
|
||||
python_path=r"/tmp/build-env-y198lh52/bin/python",
|
||||
|
||||
# Package versions
|
||||
contourpy_version="1.3.1",
|
||||
meson_version="1.6.0",
|
||||
mesonpy_version="0.17.1",
|
||||
pybind11_version="2.13.6",
|
||||
|
||||
# Misc meson settings
|
||||
meson_backend="ninja",
|
||||
build_dir=r"/project/.mesonpy-ago1q5kd/lib/contourpy/util",
|
||||
source_dir=r"/project/lib/contourpy/util",
|
||||
cross_build="False",
|
||||
|
||||
# Build options
|
||||
build_options=r"-Dbuildtype=release -Db_ndebug=if-release -Db_vscrt=md -Dvsenv=True --native-file=/project/.mesonpy-ago1q5kd/meson-python-native-file.ini",
|
||||
buildtype="release",
|
||||
cpp_std="c++17",
|
||||
debug="False",
|
||||
optimization="3",
|
||||
vsenv="True",
|
||||
b_ndebug="if-release",
|
||||
b_vscrt="from_buildtype",
|
||||
|
||||
# C++ compiler
|
||||
compiler_name="gcc",
|
||||
compiler_version="10.2.1",
|
||||
linker_id="ld.bfd",
|
||||
compile_command="c++",
|
||||
|
||||
# Host machine
|
||||
host_cpu="x86_64",
|
||||
host_cpu_family="x86_64",
|
||||
host_cpu_endian="little",
|
||||
host_cpu_system="linux",
|
||||
|
||||
# Build machine, same as host machine if not a cross_build
|
||||
build_cpu="x86_64",
|
||||
build_cpu_family="x86_64",
|
||||
build_cpu_endian="little",
|
||||
build_cpu_system="linux",
|
||||
)
|
||||
@ -0,0 +1,336 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from bokeh.io import export_png, export_svg, show
|
||||
from bokeh.io.export import get_screenshot_as_png
|
||||
from bokeh.layouts import gridplot
|
||||
from bokeh.models.annotations.labels import Label
|
||||
from bokeh.palettes import Category10
|
||||
from bokeh.plotting import figure
|
||||
import numpy as np
|
||||
|
||||
from contourpy.enum_util import as_fill_type, as_line_type
|
||||
from contourpy.util.bokeh_util import filled_to_bokeh, lines_to_bokeh
|
||||
from contourpy.util.renderer import Renderer
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from bokeh.models import GridPlot
|
||||
from bokeh.palettes import Palette
|
||||
from numpy.typing import ArrayLike
|
||||
from selenium.webdriver.remote.webdriver import WebDriver
|
||||
|
||||
from contourpy import FillType, LineType
|
||||
from contourpy._contourpy import FillReturn, LineReturn
|
||||
|
||||
|
||||
class BokehRenderer(Renderer):
|
||||
"""Utility renderer using Bokeh to render a grid of plots over the same (x, y) range.
|
||||
|
||||
Args:
|
||||
nrows (int, optional): Number of rows of plots, default ``1``.
|
||||
ncols (int, optional): Number of columns of plots, default ``1``.
|
||||
figsize (tuple(float, float), optional): Figure size in inches (assuming 100 dpi), default
|
||||
``(9, 9)``.
|
||||
show_frame (bool, optional): Whether to show frame and axes ticks, default ``True``.
|
||||
want_svg (bool, optional): Whether output is required in SVG format or not, default
|
||||
``False``.
|
||||
|
||||
Warning:
|
||||
:class:`~.BokehRenderer`, unlike :class:`~.MplRenderer`, needs to be told in advance if
|
||||
output to SVG format will be required later, otherwise it will assume PNG output.
|
||||
"""
|
||||
_figures: list[figure]
|
||||
_layout: GridPlot
|
||||
_palette: Palette
|
||||
_want_svg: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
nrows: int = 1,
|
||||
ncols: int = 1,
|
||||
figsize: tuple[float, float] = (9, 9),
|
||||
show_frame: bool = True,
|
||||
want_svg: bool = False,
|
||||
) -> None:
|
||||
self._want_svg = want_svg
|
||||
self._palette = Category10[10]
|
||||
|
||||
total_size = 100*np.asarray(figsize, dtype=int) # Assuming 100 dpi.
|
||||
|
||||
nfigures = nrows*ncols
|
||||
self._figures = []
|
||||
backend = "svg" if self._want_svg else "canvas"
|
||||
for _ in range(nfigures):
|
||||
fig = figure(output_backend=backend)
|
||||
fig.xgrid.visible = False
|
||||
fig.ygrid.visible = False
|
||||
self._figures.append(fig)
|
||||
if not show_frame:
|
||||
fig.outline_line_color = None # type: ignore[assignment]
|
||||
fig.axis.visible = False
|
||||
|
||||
self._layout = gridplot(
|
||||
self._figures, ncols=ncols, toolbar_location=None, # type: ignore[arg-type]
|
||||
width=total_size[0] // ncols, height=total_size[1] // nrows)
|
||||
|
||||
def _convert_color(self, color: str) -> str:
|
||||
if isinstance(color, str) and color[0] == "C":
|
||||
index = int(color[1:])
|
||||
color = self._palette[index]
|
||||
return color
|
||||
|
||||
def _get_figure(self, ax: figure | int) -> figure:
|
||||
if isinstance(ax, int):
|
||||
ax = self._figures[ax]
|
||||
return ax
|
||||
|
||||
def filled(
|
||||
self,
|
||||
filled: FillReturn,
|
||||
fill_type: FillType | str,
|
||||
ax: figure | int = 0,
|
||||
color: str = "C0",
|
||||
alpha: float = 0.7,
|
||||
) -> None:
|
||||
"""Plot filled contours on a single plot.
|
||||
|
||||
Args:
|
||||
filled (sequence of arrays): Filled contour data as returned by
|
||||
:meth:`~.ContourGenerator.filled`.
|
||||
fill_type (FillType or str): Type of :meth:`~.ContourGenerator.filled` data as returned
|
||||
by :attr:`~.ContourGenerator.fill_type`, or a string equivalent.
|
||||
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
||||
color (str, optional): Color to plot with. May be a string color or the letter ``"C"``
|
||||
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
||||
``Category10`` palette. Default ``"C0"``.
|
||||
alpha (float, optional): Opacity to plot with, default ``0.7``.
|
||||
"""
|
||||
fill_type = as_fill_type(fill_type)
|
||||
fig = self._get_figure(ax)
|
||||
color = self._convert_color(color)
|
||||
xs, ys = filled_to_bokeh(filled, fill_type)
|
||||
if len(xs) > 0:
|
||||
fig.multi_polygons(xs=[xs], ys=[ys], color=color, fill_alpha=alpha, line_width=0)
|
||||
|
||||
def grid(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
ax: figure | int = 0,
|
||||
color: str = "black",
|
||||
alpha: float = 0.1,
|
||||
point_color: str | None = None,
|
||||
quad_as_tri_alpha: float = 0,
|
||||
) -> None:
|
||||
"""Plot quad grid lines on a single plot.
|
||||
|
||||
Args:
|
||||
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
||||
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
||||
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
||||
color (str, optional): Color to plot grid lines, default ``"black"``.
|
||||
alpha (float, optional): Opacity to plot lines with, default ``0.1``.
|
||||
point_color (str, optional): Color to plot grid points or ``None`` if grid points
|
||||
should not be plotted, default ``None``.
|
||||
quad_as_tri_alpha (float, optional): Opacity to plot ``quad_as_tri`` grid, default
|
||||
``0``.
|
||||
|
||||
Colors may be a string color or the letter ``"C"`` followed by an integer in the range
|
||||
``"C0"`` to ``"C9"`` to use a color from the ``Category10`` palette.
|
||||
|
||||
Warning:
|
||||
``quad_as_tri_alpha > 0`` plots all quads as though they are unmasked.
|
||||
"""
|
||||
fig = self._get_figure(ax)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
xs = list(x) + list(x.T)
|
||||
ys = list(y) + list(y.T)
|
||||
kwargs = {"line_color": color, "alpha": alpha}
|
||||
fig.multi_line(xs, ys, **kwargs)
|
||||
if quad_as_tri_alpha > 0:
|
||||
# Assumes no quad mask.
|
||||
xmid = (0.25*(x[:-1, :-1] + x[1:, :-1] + x[:-1, 1:] + x[1:, 1:])).ravel()
|
||||
ymid = (0.25*(y[:-1, :-1] + y[1:, :-1] + y[:-1, 1:] + y[1:, 1:])).ravel()
|
||||
fig.multi_line(
|
||||
list(np.stack((x[:-1, :-1].ravel(), xmid, x[1:, 1:].ravel()), axis=1)),
|
||||
list(np.stack((y[:-1, :-1].ravel(), ymid, y[1:, 1:].ravel()), axis=1)),
|
||||
**kwargs)
|
||||
fig.multi_line(
|
||||
list(np.stack((x[:-1, 1:].ravel(), xmid, x[1:, :-1].ravel()), axis=1)),
|
||||
list(np.stack((y[:-1, 1:].ravel(), ymid, y[1:, :-1].ravel()), axis=1)),
|
||||
**kwargs)
|
||||
if point_color is not None:
|
||||
fig.scatter(
|
||||
x=x.ravel(), y=y.ravel(), fill_color=color, line_color=None, alpha=alpha,
|
||||
marker="circle", size=8)
|
||||
|
||||
def lines(
|
||||
self,
|
||||
lines: LineReturn,
|
||||
line_type: LineType | str,
|
||||
ax: figure | int = 0,
|
||||
color: str = "C0",
|
||||
alpha: float = 1.0,
|
||||
linewidth: float = 1,
|
||||
) -> None:
|
||||
"""Plot contour lines on a single plot.
|
||||
|
||||
Args:
|
||||
lines (sequence of arrays): Contour line data as returned by
|
||||
:meth:`~.ContourGenerator.lines`.
|
||||
line_type (LineType or str): Type of :meth:`~.ContourGenerator.lines` data as returned
|
||||
by :attr:`~.ContourGenerator.line_type`, or a string equivalent.
|
||||
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
||||
color (str, optional): Color to plot lines. May be a string color or the letter ``"C"``
|
||||
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
||||
``Category10`` palette. Default ``"C0"``.
|
||||
alpha (float, optional): Opacity to plot lines with, default ``1.0``.
|
||||
linewidth (float, optional): Width of lines, default ``1``.
|
||||
|
||||
Note:
|
||||
Assumes all lines are open line strips not closed line loops.
|
||||
"""
|
||||
line_type = as_line_type(line_type)
|
||||
fig = self._get_figure(ax)
|
||||
color = self._convert_color(color)
|
||||
xs, ys = lines_to_bokeh(lines, line_type)
|
||||
if xs is not None:
|
||||
fig.line(xs, ys, line_color=color, line_alpha=alpha, line_width=linewidth)
|
||||
|
||||
def mask(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike | np.ma.MaskedArray[Any, Any],
|
||||
ax: figure | int = 0,
|
||||
color: str = "black",
|
||||
) -> None:
|
||||
"""Plot masked out grid points as circles on a single plot.
|
||||
|
||||
Args:
|
||||
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
||||
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
||||
z (masked array of shape (ny, nx): z-values.
|
||||
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
||||
color (str, optional): Circle color, default ``"black"``.
|
||||
"""
|
||||
mask = np.ma.getmask(z) # type: ignore[no-untyped-call]
|
||||
if mask is np.ma.nomask:
|
||||
return
|
||||
fig = self._get_figure(ax)
|
||||
color = self._convert_color(color)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
fig.scatter(x[mask], y[mask], fill_color=color, marker="circle", size=10)
|
||||
|
||||
def save(
|
||||
self,
|
||||
filename: str,
|
||||
transparent: bool = False,
|
||||
*,
|
||||
webdriver: WebDriver | None = None,
|
||||
) -> None:
|
||||
"""Save plots to SVG or PNG file.
|
||||
|
||||
Args:
|
||||
filename (str): Filename to save to.
|
||||
transparent (bool, optional): Whether background should be transparent, default
|
||||
``False``.
|
||||
webdriver (WebDriver, optional): Selenium WebDriver instance to use to create the image.
|
||||
|
||||
.. versionadded:: 1.1.1
|
||||
|
||||
Warning:
|
||||
To output to SVG file, ``want_svg=True`` must have been passed to the constructor.
|
||||
"""
|
||||
if transparent:
|
||||
for fig in self._figures:
|
||||
fig.background_fill_color = None # type: ignore[assignment]
|
||||
fig.border_fill_color = None # type: ignore[assignment]
|
||||
|
||||
if self._want_svg:
|
||||
export_svg(self._layout, filename=filename, webdriver=webdriver)
|
||||
else:
|
||||
export_png(self._layout, filename=filename, webdriver=webdriver)
|
||||
|
||||
def save_to_buffer(self, *, webdriver: WebDriver | None = None) -> io.BytesIO:
|
||||
"""Save plots to an ``io.BytesIO`` buffer.
|
||||
|
||||
Args:
|
||||
webdriver (WebDriver, optional): Selenium WebDriver instance to use to create the image.
|
||||
|
||||
.. versionadded:: 1.1.1
|
||||
|
||||
Return:
|
||||
BytesIO: PNG image buffer.
|
||||
"""
|
||||
image = get_screenshot_as_png(self._layout, driver=webdriver)
|
||||
buffer = io.BytesIO()
|
||||
image.save(buffer, "png")
|
||||
return buffer
|
||||
|
||||
def show(self) -> None:
|
||||
"""Show plots in web browser, in usual Bokeh manner.
|
||||
"""
|
||||
show(self._layout)
|
||||
|
||||
def title(self, title: str, ax: figure | int = 0, color: str | None = None) -> None:
|
||||
"""Set the title of a single plot.
|
||||
|
||||
Args:
|
||||
title (str): Title text.
|
||||
ax (int or Bokeh Figure, optional): Which plot to set the title of, default ``0``.
|
||||
color (str, optional): Color to set title. May be a string color or the letter ``"C"``
|
||||
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
||||
``Category10`` palette. Default ``None`` which is ``black``.
|
||||
"""
|
||||
fig = self._get_figure(ax)
|
||||
fig.title = title # type: ignore[assignment]
|
||||
fig.title.align = "center" # type: ignore[attr-defined]
|
||||
if color is not None:
|
||||
fig.title.text_color = self._convert_color(color) # type: ignore[attr-defined]
|
||||
|
||||
def z_values(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike,
|
||||
ax: figure | int = 0,
|
||||
color: str = "green",
|
||||
fmt: str = ".1f",
|
||||
quad_as_tri: bool = False,
|
||||
) -> None:
|
||||
"""Show ``z`` values on a single plot.
|
||||
|
||||
Args:
|
||||
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
||||
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
||||
z (array-like of shape (ny, nx): z-values.
|
||||
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
||||
color (str, optional): Color of added text. May be a string color or the letter ``"C"``
|
||||
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
||||
``Category10`` palette. Default ``"green"``.
|
||||
fmt (str, optional): Format to display z-values, default ``".1f"``.
|
||||
quad_as_tri (bool, optional): Whether to show z-values at the ``quad_as_tri`` centres
|
||||
of quads.
|
||||
|
||||
Warning:
|
||||
``quad_as_tri=True`` shows z-values for all quads, even if masked.
|
||||
"""
|
||||
fig = self._get_figure(ax)
|
||||
color = self._convert_color(color)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
z = np.asarray(z)
|
||||
ny, nx = z.shape
|
||||
kwargs = {"text_color": color, "text_align": "center", "text_baseline": "middle"}
|
||||
for j in range(ny):
|
||||
for i in range(nx):
|
||||
fig.add_layout(Label(x=x[j, i], y=y[j, i], text=f"{z[j, i]:{fmt}}", **kwargs))
|
||||
if quad_as_tri:
|
||||
for j in range(ny-1):
|
||||
for i in range(nx-1):
|
||||
xx = np.mean(x[j:j+2, i:i+2])
|
||||
yy = np.mean(y[j:j+2, i:i+2])
|
||||
zz = np.mean(z[j:j+2, i:i+2])
|
||||
fig.add_layout(Label(x=xx, y=yy, text=f"{zz:{fmt}}", **kwargs))
|
||||
@ -0,0 +1,74 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, cast
|
||||
|
||||
from contourpy import FillType, LineType
|
||||
from contourpy.array import offsets_from_codes
|
||||
from contourpy.convert import convert_lines
|
||||
from contourpy.dechunk import dechunk_lines
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from contourpy._contourpy import (
|
||||
CoordinateArray,
|
||||
FillReturn,
|
||||
LineReturn,
|
||||
LineReturn_ChunkCombinedNan,
|
||||
)
|
||||
|
||||
|
||||
def filled_to_bokeh(
|
||||
filled: FillReturn,
|
||||
fill_type: FillType,
|
||||
) -> tuple[list[list[CoordinateArray]], list[list[CoordinateArray]]]:
|
||||
xs: list[list[CoordinateArray]] = []
|
||||
ys: list[list[CoordinateArray]] = []
|
||||
if fill_type in (FillType.OuterOffset, FillType.ChunkCombinedOffset,
|
||||
FillType.OuterCode, FillType.ChunkCombinedCode):
|
||||
have_codes = fill_type in (FillType.OuterCode, FillType.ChunkCombinedCode)
|
||||
|
||||
for points, offsets in zip(*filled):
|
||||
if points is None:
|
||||
continue
|
||||
if have_codes:
|
||||
offsets = offsets_from_codes(offsets)
|
||||
xs.append([]) # New outer with zero or more holes.
|
||||
ys.append([])
|
||||
for i in range(len(offsets)-1):
|
||||
xys = points[offsets[i]:offsets[i+1]]
|
||||
xs[-1].append(xys[:, 0])
|
||||
ys[-1].append(xys[:, 1])
|
||||
elif fill_type in (FillType.ChunkCombinedCodeOffset, FillType.ChunkCombinedOffsetOffset):
|
||||
for points, codes_or_offsets, outer_offsets in zip(*filled):
|
||||
if points is None:
|
||||
continue
|
||||
for j in range(len(outer_offsets)-1):
|
||||
if fill_type == FillType.ChunkCombinedCodeOffset:
|
||||
codes = codes_or_offsets[outer_offsets[j]:outer_offsets[j+1]]
|
||||
offsets = offsets_from_codes(codes) + outer_offsets[j]
|
||||
else:
|
||||
offsets = codes_or_offsets[outer_offsets[j]:outer_offsets[j+1]+1]
|
||||
xs.append([]) # New outer with zero or more holes.
|
||||
ys.append([])
|
||||
for k in range(len(offsets)-1):
|
||||
xys = points[offsets[k]:offsets[k+1]]
|
||||
xs[-1].append(xys[:, 0])
|
||||
ys[-1].append(xys[:, 1])
|
||||
else:
|
||||
raise RuntimeError(f"Conversion of FillType {fill_type} to Bokeh is not implemented")
|
||||
|
||||
return xs, ys
|
||||
|
||||
|
||||
def lines_to_bokeh(
|
||||
lines: LineReturn,
|
||||
line_type: LineType,
|
||||
) -> tuple[CoordinateArray | None, CoordinateArray | None]:
|
||||
lines = convert_lines(lines, line_type, LineType.ChunkCombinedNan)
|
||||
lines = dechunk_lines(lines, LineType.ChunkCombinedNan)
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(LineReturn_ChunkCombinedNan, lines)
|
||||
points = lines[0][0]
|
||||
if points is None:
|
||||
return None, None
|
||||
else:
|
||||
return points[:, 0], points[:, 1]
|
||||
78
venv/lib/python3.12/site-packages/contourpy/util/data.py
Normal file
78
venv/lib/python3.12/site-packages/contourpy/util/data.py
Normal file
@ -0,0 +1,78 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from contourpy._contourpy import CoordinateArray
|
||||
|
||||
|
||||
def simple(
|
||||
shape: tuple[int, int], want_mask: bool = False,
|
||||
) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]:
|
||||
"""Return simple test data consisting of the sum of two gaussians.
|
||||
|
||||
Args:
|
||||
shape (tuple(int, int)): 2D shape of data to return.
|
||||
want_mask (bool, optional): Whether test data should be masked or not, default ``False``.
|
||||
|
||||
Return:
|
||||
Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if
|
||||
``want_mask=True``.
|
||||
"""
|
||||
ny, nx = shape
|
||||
x = np.arange(nx, dtype=np.float64)
|
||||
y = np.arange(ny, dtype=np.float64)
|
||||
x, y = np.meshgrid(x, y)
|
||||
|
||||
xscale = nx - 1.0
|
||||
yscale = ny - 1.0
|
||||
|
||||
# z is sum of 2D gaussians.
|
||||
amp = np.asarray([1.0, -1.0, 0.8, -0.9, 0.7])
|
||||
mid = np.asarray([[0.4, 0.2], [0.3, 0.8], [0.9, 0.75], [0.7, 0.3], [0.05, 0.7]])
|
||||
width = np.asarray([0.4, 0.2, 0.2, 0.2, 0.1])
|
||||
|
||||
z = np.zeros_like(x)
|
||||
for i in range(len(amp)):
|
||||
z += amp[i]*np.exp(-((x/xscale - mid[i, 0])**2 + (y/yscale - mid[i, 1])**2) / width[i]**2)
|
||||
|
||||
if want_mask:
|
||||
mask = np.logical_or(
|
||||
((x/xscale - 1.0)**2 / 0.2 + (y/yscale - 0.0)**2 / 0.1) < 1.0,
|
||||
((x/xscale - 0.2)**2 / 0.02 + (y/yscale - 0.45)**2 / 0.08) < 1.0,
|
||||
)
|
||||
z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call]
|
||||
|
||||
return x, y, z
|
||||
|
||||
|
||||
def random(
|
||||
shape: tuple[int, int], seed: int = 2187, mask_fraction: float = 0.0,
|
||||
) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]:
|
||||
"""Return random test data in the range 0 to 1.
|
||||
|
||||
Args:
|
||||
shape (tuple(int, int)): 2D shape of data to return.
|
||||
seed (int, optional): Seed for random number generator, default 2187.
|
||||
mask_fraction (float, optional): Fraction of elements to mask, default 0.
|
||||
|
||||
Return:
|
||||
Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if
|
||||
``mask_fraction`` is greater than zero.
|
||||
"""
|
||||
ny, nx = shape
|
||||
x = np.arange(nx, dtype=np.float64)
|
||||
y = np.arange(ny, dtype=np.float64)
|
||||
x, y = np.meshgrid(x, y)
|
||||
|
||||
rng = np.random.default_rng(seed)
|
||||
z = rng.uniform(size=shape)
|
||||
|
||||
if mask_fraction > 0.0:
|
||||
mask_fraction = min(mask_fraction, 0.99)
|
||||
mask = rng.uniform(size=shape) < mask_fraction
|
||||
z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call]
|
||||
|
||||
return x, y, z
|
||||
535
venv/lib/python3.12/site-packages/contourpy/util/mpl_renderer.py
Normal file
535
venv/lib/python3.12/site-packages/contourpy/util/mpl_renderer.py
Normal file
@ -0,0 +1,535 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
from itertools import pairwise
|
||||
from typing import TYPE_CHECKING, Any, cast
|
||||
|
||||
import matplotlib.collections as mcollections
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from contourpy import FillType, LineType
|
||||
from contourpy.convert import convert_filled, convert_lines
|
||||
from contourpy.enum_util import as_fill_type, as_line_type
|
||||
from contourpy.util.mpl_util import filled_to_mpl_paths, lines_to_mpl_paths
|
||||
from contourpy.util.renderer import Renderer
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.figure import Figure
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
import contourpy._contourpy as cpy
|
||||
|
||||
|
||||
class MplRenderer(Renderer):
|
||||
"""Utility renderer using Matplotlib to render a grid of plots over the same (x, y) range.
|
||||
|
||||
Args:
|
||||
nrows (int, optional): Number of rows of plots, default ``1``.
|
||||
ncols (int, optional): Number of columns of plots, default ``1``.
|
||||
figsize (tuple(float, float), optional): Figure size in inches, default ``(9, 9)``.
|
||||
show_frame (bool, optional): Whether to show frame and axes ticks, default ``True``.
|
||||
backend (str, optional): Matplotlib backend to use or ``None`` for default backend.
|
||||
Default ``None``.
|
||||
gridspec_kw (dict, optional): Gridspec keyword arguments to pass to ``plt.subplots``,
|
||||
default None.
|
||||
"""
|
||||
_axes: Sequence[Axes]
|
||||
_fig: Figure
|
||||
_want_tight: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
nrows: int = 1,
|
||||
ncols: int = 1,
|
||||
figsize: tuple[float, float] = (9, 9),
|
||||
show_frame: bool = True,
|
||||
backend: str | None = None,
|
||||
gridspec_kw: dict[str, Any] | None = None,
|
||||
) -> None:
|
||||
if backend is not None:
|
||||
import matplotlib as mpl
|
||||
mpl.use(backend)
|
||||
|
||||
kwargs: dict[str, Any] = {"figsize": figsize, "squeeze": False,
|
||||
"sharex": True, "sharey": True}
|
||||
if gridspec_kw is not None:
|
||||
kwargs["gridspec_kw"] = gridspec_kw
|
||||
else:
|
||||
kwargs["subplot_kw"] = {"aspect": "equal"}
|
||||
|
||||
self._fig, axes = plt.subplots(nrows, ncols, **kwargs)
|
||||
self._axes = axes.flatten()
|
||||
if not show_frame:
|
||||
for ax in self._axes:
|
||||
ax.axis("off")
|
||||
|
||||
self._want_tight = True
|
||||
|
||||
def __del__(self) -> None:
|
||||
if hasattr(self, "_fig"):
|
||||
plt.close(self._fig)
|
||||
|
||||
def _autoscale(self) -> None:
|
||||
# Using axes._need_autoscale attribute if need to autoscale before rendering after adding
|
||||
# lines/filled. Only want to autoscale once per axes regardless of how many lines/filled
|
||||
# added.
|
||||
for ax in self._axes:
|
||||
if getattr(ax, "_need_autoscale", False):
|
||||
ax.autoscale_view(tight=True)
|
||||
ax._need_autoscale = False # type: ignore[attr-defined]
|
||||
if self._want_tight and len(self._axes) > 1:
|
||||
self._fig.tight_layout()
|
||||
|
||||
def _get_ax(self, ax: Axes | int) -> Axes:
|
||||
if isinstance(ax, int):
|
||||
ax = self._axes[ax]
|
||||
return ax
|
||||
|
||||
def filled(
|
||||
self,
|
||||
filled: cpy.FillReturn,
|
||||
fill_type: FillType | str,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "C0",
|
||||
alpha: float = 0.7,
|
||||
) -> None:
|
||||
"""Plot filled contours on a single Axes.
|
||||
|
||||
Args:
|
||||
filled (sequence of arrays): Filled contour data as returned by
|
||||
:meth:`~.ContourGenerator.filled`.
|
||||
fill_type (FillType or str): Type of :meth:`~.ContourGenerator.filled` data as returned
|
||||
by :attr:`~.ContourGenerator.fill_type`, or string equivalent
|
||||
ax (int or Maplotlib Axes, optional): Which axes to plot on, default ``0``.
|
||||
color (str, optional): Color to plot with. May be a string color or the letter ``"C"``
|
||||
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
||||
``tab10`` colormap. Default ``"C0"``.
|
||||
alpha (float, optional): Opacity to plot with, default ``0.7``.
|
||||
"""
|
||||
fill_type = as_fill_type(fill_type)
|
||||
ax = self._get_ax(ax)
|
||||
paths = filled_to_mpl_paths(filled, fill_type)
|
||||
collection = mcollections.PathCollection(
|
||||
paths, facecolors=color, edgecolors="none", lw=0, alpha=alpha)
|
||||
ax.add_collection(collection)
|
||||
ax._need_autoscale = True # type: ignore[attr-defined]
|
||||
|
||||
def grid(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "black",
|
||||
alpha: float = 0.1,
|
||||
point_color: str | None = None,
|
||||
quad_as_tri_alpha: float = 0,
|
||||
) -> None:
|
||||
"""Plot quad grid lines on a single Axes.
|
||||
|
||||
Args:
|
||||
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
||||
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
||||
ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
|
||||
color (str, optional): Color to plot grid lines, default ``"black"``.
|
||||
alpha (float, optional): Opacity to plot lines with, default ``0.1``.
|
||||
point_color (str, optional): Color to plot grid points or ``None`` if grid points
|
||||
should not be plotted, default ``None``.
|
||||
quad_as_tri_alpha (float, optional): Opacity to plot ``quad_as_tri`` grid, default 0.
|
||||
|
||||
Colors may be a string color or the letter ``"C"`` followed by an integer in the range
|
||||
``"C0"`` to ``"C9"`` to use a color from the ``tab10`` colormap.
|
||||
|
||||
Warning:
|
||||
``quad_as_tri_alpha > 0`` plots all quads as though they are unmasked.
|
||||
"""
|
||||
ax = self._get_ax(ax)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
kwargs: dict[str, Any] = {"color": color, "alpha": alpha}
|
||||
ax.plot(x, y, x.T, y.T, **kwargs)
|
||||
if quad_as_tri_alpha > 0:
|
||||
# Assumes no quad mask.
|
||||
xmid = 0.25*(x[:-1, :-1] + x[1:, :-1] + x[:-1, 1:] + x[1:, 1:])
|
||||
ymid = 0.25*(y[:-1, :-1] + y[1:, :-1] + y[:-1, 1:] + y[1:, 1:])
|
||||
kwargs["alpha"] = quad_as_tri_alpha
|
||||
ax.plot(
|
||||
np.stack((x[:-1, :-1], xmid, x[1:, 1:])).reshape((3, -1)),
|
||||
np.stack((y[:-1, :-1], ymid, y[1:, 1:])).reshape((3, -1)),
|
||||
np.stack((x[1:, :-1], xmid, x[:-1, 1:])).reshape((3, -1)),
|
||||
np.stack((y[1:, :-1], ymid, y[:-1, 1:])).reshape((3, -1)),
|
||||
**kwargs)
|
||||
if point_color is not None:
|
||||
ax.plot(x, y, color=point_color, alpha=alpha, marker="o", lw=0)
|
||||
ax._need_autoscale = True # type: ignore[attr-defined]
|
||||
|
||||
def lines(
|
||||
self,
|
||||
lines: cpy.LineReturn,
|
||||
line_type: LineType | str,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "C0",
|
||||
alpha: float = 1.0,
|
||||
linewidth: float = 1,
|
||||
) -> None:
|
||||
"""Plot contour lines on a single Axes.
|
||||
|
||||
Args:
|
||||
lines (sequence of arrays): Contour line data as returned by
|
||||
:meth:`~.ContourGenerator.lines`.
|
||||
line_type (LineType or str): Type of :meth:`~.ContourGenerator.lines` data as returned
|
||||
by :attr:`~.ContourGenerator.line_type`, or string equivalent.
|
||||
ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
|
||||
color (str, optional): Color to plot lines. May be a string color or the letter ``"C"``
|
||||
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
||||
``tab10`` colormap. Default ``"C0"``.
|
||||
alpha (float, optional): Opacity to plot lines with, default ``1.0``.
|
||||
linewidth (float, optional): Width of lines, default ``1``.
|
||||
"""
|
||||
line_type = as_line_type(line_type)
|
||||
ax = self._get_ax(ax)
|
||||
paths = lines_to_mpl_paths(lines, line_type)
|
||||
collection = mcollections.PathCollection(
|
||||
paths, facecolors="none", edgecolors=color, lw=linewidth, alpha=alpha)
|
||||
ax.add_collection(collection)
|
||||
ax._need_autoscale = True # type: ignore[attr-defined]
|
||||
|
||||
def mask(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike | np.ma.MaskedArray[Any, Any],
|
||||
ax: Axes | int = 0,
|
||||
color: str = "black",
|
||||
) -> None:
|
||||
"""Plot masked out grid points as circles on a single Axes.
|
||||
|
||||
Args:
|
||||
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
||||
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
||||
z (masked array of shape (ny, nx): z-values.
|
||||
ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
|
||||
color (str, optional): Circle color, default ``"black"``.
|
||||
"""
|
||||
mask = np.ma.getmask(z) # type: ignore[no-untyped-call]
|
||||
if mask is np.ma.nomask:
|
||||
return
|
||||
ax = self._get_ax(ax)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
ax.plot(x[mask], y[mask], "o", c=color)
|
||||
|
||||
def save(self, filename: str, transparent: bool = False) -> None:
|
||||
"""Save plots to SVG or PNG file.
|
||||
|
||||
Args:
|
||||
filename (str): Filename to save to.
|
||||
transparent (bool, optional): Whether background should be transparent, default
|
||||
``False``.
|
||||
"""
|
||||
self._autoscale()
|
||||
self._fig.savefig(filename, transparent=transparent)
|
||||
|
||||
def save_to_buffer(self) -> io.BytesIO:
|
||||
"""Save plots to an ``io.BytesIO`` buffer.
|
||||
|
||||
Return:
|
||||
BytesIO: PNG image buffer.
|
||||
"""
|
||||
self._autoscale()
|
||||
buf = io.BytesIO()
|
||||
self._fig.savefig(buf, format="png")
|
||||
buf.seek(0)
|
||||
return buf
|
||||
|
||||
def show(self) -> None:
|
||||
"""Show plots in an interactive window, in the usual Matplotlib manner.
|
||||
"""
|
||||
self._autoscale()
|
||||
plt.show()
|
||||
|
||||
def title(self, title: str, ax: Axes | int = 0, color: str | None = None) -> None:
|
||||
"""Set the title of a single Axes.
|
||||
|
||||
Args:
|
||||
title (str): Title text.
|
||||
ax (int or Matplotlib Axes, optional): Which Axes to set the title of, default ``0``.
|
||||
color (str, optional): Color to set title. May be a string color or the letter ``"C"``
|
||||
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
||||
``tab10`` colormap. Default is ``None`` which uses Matplotlib's default title color
|
||||
that depends on the stylesheet in use.
|
||||
"""
|
||||
if color:
|
||||
self._get_ax(ax).set_title(title, color=color)
|
||||
else:
|
||||
self._get_ax(ax).set_title(title)
|
||||
|
||||
def z_values(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "green",
|
||||
fmt: str = ".1f",
|
||||
quad_as_tri: bool = False,
|
||||
) -> None:
|
||||
"""Show ``z`` values on a single Axes.
|
||||
|
||||
Args:
|
||||
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
||||
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
||||
z (array-like of shape (ny, nx): z-values.
|
||||
ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
|
||||
color (str, optional): Color of added text. May be a string color or the letter ``"C"``
|
||||
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
||||
``tab10`` colormap. Default ``"green"``.
|
||||
fmt (str, optional): Format to display z-values, default ``".1f"``.
|
||||
quad_as_tri (bool, optional): Whether to show z-values at the ``quad_as_tri`` centers
|
||||
of quads.
|
||||
|
||||
Warning:
|
||||
``quad_as_tri=True`` shows z-values for all quads, even if masked.
|
||||
"""
|
||||
ax = self._get_ax(ax)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
z = np.asarray(z)
|
||||
ny, nx = z.shape
|
||||
for j in range(ny):
|
||||
for i in range(nx):
|
||||
ax.text(x[j, i], y[j, i], f"{z[j, i]:{fmt}}", ha="center", va="center",
|
||||
color=color, clip_on=True)
|
||||
if quad_as_tri:
|
||||
for j in range(ny-1):
|
||||
for i in range(nx-1):
|
||||
xx = np.mean(x[j:j+2, i:i+2])
|
||||
yy = np.mean(y[j:j+2, i:i+2])
|
||||
zz = np.mean(z[j:j+2, i:i+2])
|
||||
ax.text(xx, yy, f"{zz:{fmt}}", ha="center", va="center", color=color,
|
||||
clip_on=True)
|
||||
|
||||
|
||||
class MplTestRenderer(MplRenderer):
|
||||
"""Test renderer implemented using Matplotlib.
|
||||
|
||||
No whitespace around plots and no spines/ticks displayed.
|
||||
Uses Agg backend, so can only save to file/buffer, cannot call ``show()``.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
nrows: int = 1,
|
||||
ncols: int = 1,
|
||||
figsize: tuple[float, float] = (9, 9),
|
||||
) -> None:
|
||||
gridspec = {
|
||||
"left": 0.01,
|
||||
"right": 0.99,
|
||||
"top": 0.99,
|
||||
"bottom": 0.01,
|
||||
"wspace": 0.01,
|
||||
"hspace": 0.01,
|
||||
}
|
||||
super().__init__(
|
||||
nrows, ncols, figsize, show_frame=True, backend="Agg", gridspec_kw=gridspec,
|
||||
)
|
||||
|
||||
for ax in self._axes:
|
||||
ax.set_xmargin(0.0)
|
||||
ax.set_ymargin(0.0)
|
||||
ax.set_xticks([])
|
||||
ax.set_yticks([])
|
||||
|
||||
self._want_tight = False
|
||||
|
||||
|
||||
class MplDebugRenderer(MplRenderer):
|
||||
"""Debug renderer implemented using Matplotlib.
|
||||
|
||||
Extends ``MplRenderer`` to add extra information to help in debugging such as markers, arrows,
|
||||
text, etc.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
nrows: int = 1,
|
||||
ncols: int = 1,
|
||||
figsize: tuple[float, float] = (9, 9),
|
||||
show_frame: bool = True,
|
||||
) -> None:
|
||||
super().__init__(nrows, ncols, figsize, show_frame)
|
||||
|
||||
def _arrow(
|
||||
self,
|
||||
ax: Axes,
|
||||
line_start: cpy.CoordinateArray,
|
||||
line_end: cpy.CoordinateArray,
|
||||
color: str,
|
||||
alpha: float,
|
||||
arrow_size: float,
|
||||
) -> None:
|
||||
mid = 0.5*(line_start + line_end)
|
||||
along = line_end - line_start
|
||||
along /= np.sqrt(np.dot(along, along)) # Unit vector.
|
||||
right = np.asarray((along[1], -along[0]))
|
||||
arrow = np.stack((
|
||||
mid - (along*0.5 - right)*arrow_size,
|
||||
mid + along*0.5*arrow_size,
|
||||
mid - (along*0.5 + right)*arrow_size,
|
||||
))
|
||||
ax.plot(arrow[:, 0], arrow[:, 1], "-", c=color, alpha=alpha)
|
||||
|
||||
def filled(
|
||||
self,
|
||||
filled: cpy.FillReturn,
|
||||
fill_type: FillType | str,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "C1",
|
||||
alpha: float = 0.7,
|
||||
line_color: str = "C0",
|
||||
line_alpha: float = 0.7,
|
||||
point_color: str = "C0",
|
||||
start_point_color: str = "red",
|
||||
arrow_size: float = 0.1,
|
||||
) -> None:
|
||||
fill_type = as_fill_type(fill_type)
|
||||
super().filled(filled, fill_type, ax, color, alpha)
|
||||
|
||||
if line_color is None and point_color is None:
|
||||
return
|
||||
|
||||
ax = self._get_ax(ax)
|
||||
filled = convert_filled(filled, fill_type, FillType.ChunkCombinedOffset)
|
||||
|
||||
# Lines.
|
||||
if line_color is not None:
|
||||
for points, offsets in zip(*filled):
|
||||
if points is None:
|
||||
continue
|
||||
for start, end in pairwise(offsets):
|
||||
xys = points[start:end]
|
||||
ax.plot(xys[:, 0], xys[:, 1], c=line_color, alpha=line_alpha)
|
||||
|
||||
if arrow_size > 0.0:
|
||||
n = len(xys)
|
||||
for i in range(n-1):
|
||||
self._arrow(ax, xys[i], xys[i+1], line_color, line_alpha, arrow_size)
|
||||
|
||||
# Points.
|
||||
if point_color is not None:
|
||||
for points, offsets in zip(*filled):
|
||||
if points is None:
|
||||
continue
|
||||
mask = np.ones(offsets[-1], dtype=bool)
|
||||
mask[offsets[1:]-1] = False # Exclude end points.
|
||||
if start_point_color is not None:
|
||||
start_indices = offsets[:-1]
|
||||
mask[start_indices] = False # Exclude start points.
|
||||
ax.plot(
|
||||
points[:, 0][mask], points[:, 1][mask], "o", c=point_color, alpha=line_alpha)
|
||||
|
||||
if start_point_color is not None:
|
||||
ax.plot(points[:, 0][start_indices], points[:, 1][start_indices], "o",
|
||||
c=start_point_color, alpha=line_alpha)
|
||||
|
||||
def lines(
|
||||
self,
|
||||
lines: cpy.LineReturn,
|
||||
line_type: LineType | str,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "C0",
|
||||
alpha: float = 1.0,
|
||||
linewidth: float = 1,
|
||||
point_color: str = "C0",
|
||||
start_point_color: str = "red",
|
||||
arrow_size: float = 0.1,
|
||||
) -> None:
|
||||
line_type = as_line_type(line_type)
|
||||
super().lines(lines, line_type, ax, color, alpha, linewidth)
|
||||
|
||||
if arrow_size == 0.0 and point_color is None:
|
||||
return
|
||||
|
||||
ax = self._get_ax(ax)
|
||||
separate_lines = convert_lines(lines, line_type, LineType.Separate)
|
||||
if TYPE_CHECKING:
|
||||
separate_lines = cast(cpy.LineReturn_Separate, separate_lines)
|
||||
|
||||
if arrow_size > 0.0:
|
||||
for line in separate_lines:
|
||||
for i in range(len(line)-1):
|
||||
self._arrow(ax, line[i], line[i+1], color, alpha, arrow_size)
|
||||
|
||||
if point_color is not None:
|
||||
for line in separate_lines:
|
||||
start_index = 0
|
||||
end_index = len(line)
|
||||
if start_point_color is not None:
|
||||
ax.plot(line[0, 0], line[0, 1], "o", c=start_point_color, alpha=alpha)
|
||||
start_index = 1
|
||||
if line[0][0] == line[-1][0] and line[0][1] == line[-1][1]:
|
||||
end_index -= 1
|
||||
ax.plot(line[start_index:end_index, 0], line[start_index:end_index, 1], "o",
|
||||
c=color, alpha=alpha)
|
||||
|
||||
def point_numbers(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "red",
|
||||
) -> None:
|
||||
ax = self._get_ax(ax)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
z = np.asarray(z)
|
||||
ny, nx = z.shape
|
||||
for j in range(ny):
|
||||
for i in range(nx):
|
||||
quad = i + j*nx
|
||||
ax.text(x[j, i], y[j, i], str(quad), ha="right", va="top", color=color,
|
||||
clip_on=True)
|
||||
|
||||
def quad_numbers(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "blue",
|
||||
) -> None:
|
||||
ax = self._get_ax(ax)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
z = np.asarray(z)
|
||||
ny, nx = z.shape
|
||||
for j in range(1, ny):
|
||||
for i in range(1, nx):
|
||||
quad = i + j*nx
|
||||
xmid = x[j-1:j+1, i-1:i+1].mean()
|
||||
ymid = y[j-1:j+1, i-1:i+1].mean()
|
||||
ax.text(xmid, ymid, str(quad), ha="center", va="center", color=color, clip_on=True)
|
||||
|
||||
def z_levels(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike,
|
||||
lower_level: float,
|
||||
upper_level: float | None = None,
|
||||
ax: Axes | int = 0,
|
||||
color: str = "green",
|
||||
) -> None:
|
||||
ax = self._get_ax(ax)
|
||||
x, y = self._grid_as_2d(x, y)
|
||||
z = np.asarray(z)
|
||||
ny, nx = z.shape
|
||||
for j in range(ny):
|
||||
for i in range(nx):
|
||||
zz = z[j, i]
|
||||
if upper_level is not None and zz > upper_level:
|
||||
z_level = 2
|
||||
elif zz > lower_level:
|
||||
z_level = 1
|
||||
else:
|
||||
z_level = 0
|
||||
ax.text(x[j, i], y[j, i], str(z_level), ha="left", va="bottom", color=color,
|
||||
clip_on=True)
|
||||
77
venv/lib/python3.12/site-packages/contourpy/util/mpl_util.py
Normal file
77
venv/lib/python3.12/site-packages/contourpy/util/mpl_util.py
Normal file
@ -0,0 +1,77 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from itertools import pairwise
|
||||
from typing import TYPE_CHECKING, cast
|
||||
|
||||
import matplotlib.path as mpath
|
||||
import numpy as np
|
||||
|
||||
from contourpy import FillType, LineType
|
||||
from contourpy.array import codes_from_offsets
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from contourpy._contourpy import FillReturn, LineReturn, LineReturn_Separate
|
||||
|
||||
|
||||
def filled_to_mpl_paths(filled: FillReturn, fill_type: FillType) -> list[mpath.Path]:
|
||||
if fill_type in (FillType.OuterCode, FillType.ChunkCombinedCode):
|
||||
paths = [mpath.Path(points, codes) for points, codes in zip(*filled) if points is not None]
|
||||
elif fill_type in (FillType.OuterOffset, FillType.ChunkCombinedOffset):
|
||||
paths = [mpath.Path(points, codes_from_offsets(offsets))
|
||||
for points, offsets in zip(*filled) if points is not None]
|
||||
elif fill_type == FillType.ChunkCombinedCodeOffset:
|
||||
paths = []
|
||||
for points, codes, outer_offsets in zip(*filled):
|
||||
if points is None:
|
||||
continue
|
||||
points = np.split(points, outer_offsets[1:-1])
|
||||
codes = np.split(codes, outer_offsets[1:-1])
|
||||
paths += [mpath.Path(p, c) for p, c in zip(points, codes)]
|
||||
elif fill_type == FillType.ChunkCombinedOffsetOffset:
|
||||
paths = []
|
||||
for points, offsets, outer_offsets in zip(*filled):
|
||||
if points is None:
|
||||
continue
|
||||
for i in range(len(outer_offsets)-1):
|
||||
offs = offsets[outer_offsets[i]:outer_offsets[i+1]+1]
|
||||
pts = points[offs[0]:offs[-1]]
|
||||
paths += [mpath.Path(pts, codes_from_offsets(offs - offs[0]))]
|
||||
else:
|
||||
raise RuntimeError(f"Conversion of FillType {fill_type} to MPL Paths is not implemented")
|
||||
return paths
|
||||
|
||||
|
||||
def lines_to_mpl_paths(lines: LineReturn, line_type: LineType) -> list[mpath.Path]:
|
||||
if line_type == LineType.Separate:
|
||||
if TYPE_CHECKING:
|
||||
lines = cast(LineReturn_Separate, lines)
|
||||
paths = []
|
||||
for line in lines:
|
||||
# Drawing as Paths so that they can be closed correctly.
|
||||
closed = line[0, 0] == line[-1, 0] and line[0, 1] == line[-1, 1]
|
||||
paths.append(mpath.Path(line, closed=closed))
|
||||
elif line_type in (LineType.SeparateCode, LineType.ChunkCombinedCode):
|
||||
paths = [mpath.Path(points, codes) for points, codes in zip(*lines) if points is not None]
|
||||
elif line_type == LineType.ChunkCombinedOffset:
|
||||
paths = []
|
||||
for points, offsets in zip(*lines):
|
||||
if points is None:
|
||||
continue
|
||||
for i in range(len(offsets)-1):
|
||||
line = points[offsets[i]:offsets[i+1]]
|
||||
closed = line[0, 0] == line[-1, 0] and line[0, 1] == line[-1, 1]
|
||||
paths.append(mpath.Path(line, closed=closed))
|
||||
elif line_type == LineType.ChunkCombinedNan:
|
||||
paths = []
|
||||
for points in lines[0]:
|
||||
if points is None:
|
||||
continue
|
||||
nan_offsets = np.nonzero(np.isnan(points[:, 0]))[0]
|
||||
nan_offsets = np.concatenate([[-1], nan_offsets, [len(points)]])
|
||||
for s, e in pairwise(nan_offsets):
|
||||
line = points[s+1:e]
|
||||
closed = line[0, 0] == line[-1, 0] and line[0, 1] == line[-1, 1]
|
||||
paths.append(mpath.Path(line, closed=closed))
|
||||
else:
|
||||
raise RuntimeError(f"Conversion of LineType {line_type} to MPL Paths is not implemented")
|
||||
return paths
|
||||
166
venv/lib/python3.12/site-packages/contourpy/util/renderer.py
Normal file
166
venv/lib/python3.12/site-packages/contourpy/util/renderer.py
Normal file
@ -0,0 +1,166 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import io
|
||||
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from contourpy._contourpy import CoordinateArray, FillReturn, FillType, LineReturn, LineType
|
||||
|
||||
|
||||
class Renderer(ABC):
|
||||
"""Abstract base class for renderers."""
|
||||
|
||||
def _grid_as_2d(self, x: ArrayLike, y: ArrayLike) -> tuple[CoordinateArray, CoordinateArray]:
|
||||
x = np.asarray(x)
|
||||
y = np.asarray(y)
|
||||
if x.ndim == 1:
|
||||
x, y = np.meshgrid(x, y)
|
||||
return x, y
|
||||
|
||||
@abstractmethod
|
||||
def filled(
|
||||
self,
|
||||
filled: FillReturn,
|
||||
fill_type: FillType | str,
|
||||
ax: Any = 0,
|
||||
color: str = "C0",
|
||||
alpha: float = 0.7,
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def grid(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
ax: Any = 0,
|
||||
color: str = "black",
|
||||
alpha: float = 0.1,
|
||||
point_color: str | None = None,
|
||||
quad_as_tri_alpha: float = 0,
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def lines(
|
||||
self,
|
||||
lines: LineReturn,
|
||||
line_type: LineType | str,
|
||||
ax: Any = 0,
|
||||
color: str = "C0",
|
||||
alpha: float = 1.0,
|
||||
linewidth: float = 1,
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def mask(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike | np.ma.MaskedArray[Any, Any],
|
||||
ax: Any = 0,
|
||||
color: str = "black",
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def multi_filled(
|
||||
self,
|
||||
multi_filled: list[FillReturn],
|
||||
fill_type: FillType | str,
|
||||
ax: Any = 0,
|
||||
color: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Plot multiple sets of filled contours on a single axes.
|
||||
|
||||
Args:
|
||||
multi_filled (list of filled contour arrays): Multiple filled contour sets as returned
|
||||
by :meth:`.ContourGenerator.multi_filled`.
|
||||
fill_type (FillType or str): Type of filled data as returned by
|
||||
:attr:`~.ContourGenerator.fill_type`, or string equivalent.
|
||||
ax (int or Renderer-specific axes or figure object, optional): Which axes to plot on,
|
||||
default ``0``.
|
||||
color (str or None, optional): If a string color then this same color is used for all
|
||||
filled contours. If ``None``, the default, then the filled contour sets use colors
|
||||
from the ``tab10`` colormap in order, wrapping around to the beginning if more than
|
||||
10 sets of filled contours are rendered.
|
||||
kwargs: All other keyword argument are passed on to
|
||||
:meth:`.Renderer.filled` unchanged.
|
||||
|
||||
.. versionadded:: 1.3.0
|
||||
"""
|
||||
if color is not None:
|
||||
kwargs["color"] = color
|
||||
for i, filled in enumerate(multi_filled):
|
||||
if color is None:
|
||||
kwargs["color"] = f"C{i % 10}"
|
||||
self.filled(filled, fill_type, ax, **kwargs)
|
||||
|
||||
def multi_lines(
|
||||
self,
|
||||
multi_lines: list[LineReturn],
|
||||
line_type: LineType | str,
|
||||
ax: Any = 0,
|
||||
color: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Plot multiple sets of contour lines on a single axes.
|
||||
|
||||
Args:
|
||||
multi_lines (list of contour line arrays): Multiple contour line sets as returned by
|
||||
:meth:`.ContourGenerator.multi_lines`.
|
||||
line_type (LineType or str): Type of line data as returned by
|
||||
:attr:`~.ContourGenerator.line_type`, or string equivalent.
|
||||
ax (int or Renderer-specific axes or figure object, optional): Which axes to plot on,
|
||||
default ``0``.
|
||||
color (str or None, optional): If a string color then this same color is used for all
|
||||
lines. If ``None``, the default, then the line sets use colors from the ``tab10``
|
||||
colormap in order, wrapping around to the beginning if more than 10 sets of lines
|
||||
are rendered.
|
||||
kwargs: All other keyword argument are passed on to
|
||||
:meth:`Renderer.lines` unchanged.
|
||||
|
||||
.. versionadded:: 1.3.0
|
||||
"""
|
||||
if color is not None:
|
||||
kwargs["color"] = color
|
||||
for i, lines in enumerate(multi_lines):
|
||||
if color is None:
|
||||
kwargs["color"] = f"C{i % 10}"
|
||||
self.lines(lines, line_type, ax, **kwargs)
|
||||
|
||||
@abstractmethod
|
||||
def save(self, filename: str, transparent: bool = False) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save_to_buffer(self) -> io.BytesIO:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def show(self) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def title(self, title: str, ax: Any = 0, color: str | None = None) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def z_values(
|
||||
self,
|
||||
x: ArrayLike,
|
||||
y: ArrayLike,
|
||||
z: ArrayLike,
|
||||
ax: Any = 0,
|
||||
color: str = "green",
|
||||
fmt: str = ".1f",
|
||||
quad_as_tri: bool = False,
|
||||
) -> None:
|
||||
pass
|
||||
Reference in New Issue
Block a user